ABLEITUNG EINER EXPONENTIALFUNKTION

Gegeben sind vier Exponentialfunktionen und sechs mögliche Ableitungsfunktionen.

AUFGABENSTELLUNG:

Ordne jeder Funktionsgleichung die richtige erste Ableitung zu!

$f(x)=e^x$
$f(x) = e^{-x}$
$f(x) = e^{\frac{x}{2}}$
$f(x) = -\frac{1}{2}e^{-2x}$

A	$f'(x) = 2e^{\frac{x}{2}}$
В	$f'(x) = \frac{1}{2} * e^{\frac{x}{2}}$
С	$f'(x) = 2e^{-2x}$
D	$f'(x) = e^x$
Е	$f'(x) = e^{-2x}$
F	$f'(x) = -e^{-x}$

	eee(a e e e	eeeee		a e e	<u>eeeeeeeee</u>
迴						
	M.	_0004	,	WEN	NDEPU	JNKTE
ووووووووووووووووو	Polynor	Polynomfunktionen können Wendepunkte besitzen.				
	AUFGABENSTELLUNG:					
98	Ergänze die Textlücke im folgenden Satz durch Ankreuzen der jeweils richtigen Satzteile so, dass eine mathematisch korrekte Aussage entsteht!					
اكاوار	Jede Po	lynomfunktion	vom Grad1 hat _		2 Wende	punkte.
			1	7		2
			2			mindestens
			3			höchstens
			4			genau
98						
99						
				۸TF	łΛG)

. [0]

<u>opededededededededede</u>

TANGENTE EINER FUNKTION

Von einer Polynomfunktion sind folgende Eigenschaften bekannt: f(0) = -2 und f'(0) = 3.

AUFGABENSTELLUNG:

Gib die Gleichung der Tangente t an den Graphen der Funktion f im Punkt T(0|f(0)) an!

t:_____

) POR OR OR OR OF THE STATE OF

M_0010

POLYNOMFUNKTION

Gegeben ist eine Polynomfunktion f mit $f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$

AUFGABENSTELLUNG:

Kreuze die zutreffende(n) Aussage(n) an!

Jede Polynomfunktion dritten Grades hat genau drei
Nullstellen.
Jede Polynomfunktion vierten Grades hat
mindestens eine Nullstelle.
Jede Polynomfunktion, die zwei lokale Extremstellen
hat, ist mindestens vom Grad 3.
Jede Polynomfunktion, die genau zwei lokale
Extremstellen hat, hat mindestens eine Nullstelle.
Jede Polynomfunktion, deren Grad größer als 3 ist,
hat mindestens eine lokale Extremstelle.

KRÜMMUNGSINTERVALL

Der Graph einer Polynomfunktion dritten Grades hat im Punkt T(-3|1) ein lokales Minimum, in H(-1|3) ein lokales Maximum und in W(-2|2) einen Wendepunkt.

AUFGABENSTELLUNG:

Kreuze jenes Intervall an, in dem die Funktion links gekrümmt ist!

(-∞; 2)
(−2; ∞)
(-3; 1)
(-2; 2)
(-∞; -2)
(3; ∞)

EXTREMPUNKTE

Von einer Polynomfunktion f dritten Grades sind die beiden Extrempunkte E_1 (0|-5) und E_2 (5|-1) bekannt.

AUFGABENSTELLUNG:

Kreuze jene beiden Bedingungen an, die in diesem Zusammenhang erfüllt sein müssen!

f(0) = 0
f(5) = -1
f'(0) = 0
f'(-5) = 0
f''(0) = 5

MAXIMALE ANZAHL AN NULLSTELLEN

Gegeben ist die Funktion f mit $f(x) = ax^4 + bx^2 + c$, wobei $a, b, c \in \mathbb{R}$ sind.

AUFGABENSTELLUNG:

Gib jeweils die minimale und maximale Anzahl an möglichen Nullstellen an.

Minimale Anzahl:

Maximale Anzahl:

MAXIMALE ANZAHL AN NULLSTELLEN

Gegeben ist die Funktion f mit $f(x) = ax^4 + bx^2 + cx$, wobei $a, b, c \in \mathbb{R}$ sind.

AUFGABENSTELLUNG:

Gib jeweils die minimale und maximale Anzahl an möglichen Nullstellen an.

Minimale Anzahl:

Maximale Anzahl:

MAXIMALE ANZAHL AN NULLSTELLEN

Gegeben ist die Funktion f mit $f(x) = ax^3 + bx^2 + cx + d$, wobei $a, b, c \in \mathbb{R}$ sind.

AUFGABENSTELLUNG:

Gib jeweils die minimale und maximale Anzahl an möglichen Nullstellen an.

Minimale Anzahl:

Maximale Anzahl:

MAXIMALE ANZAHL AN EXTREMSTELLEN

Gegeben ist die Funktion f mit $f(x) = ax^4 + bx^2 + c$, wobei $a, b, c \in \mathbb{R}$ sind.

AUFGABENSTELLUNG:

Gib jeweils die minimale und maximale Anzahl an möglichen Extremstellen an.

Minimale Anzahl:

Maximale Anzahl:

MAXIMALE ANZAHL AN EXTREMSTELLEN

Gegeben ist die Funktion f mit $f(x) = ax^4 + bx^2 + cx$, wobei $a, b, c \in \mathbb{R}$ sind.

AUFGABENSTELLUNG:

Gib jeweils die minimale und maximale Anzahl an möglichen Extremstellen an.

Minimale Anzahl:

Maximale Anzahl:

MAXIMALE ANZAHL AN EXTREMSTELLEN

Gegeben ist die Funktion f mit $f(x) = ax^3 + bx^2 + cx + d$, wobei $a, b, c \in \mathbb{R}$ sind.

AUFGABENSTELLUNG:

Gib jeweils die minimale und maximale Anzahl an möglichen Extremstellen an.

Minimale Anzahl:

Maximale Anzahl:

MAXIMALE ANZAHL AN WENDESTELLEN

Gegeben ist die Funktion f mit $f(x) = ax^4 + bx^2 + c$, wobei $a, b, c \in \mathbb{R}$ sind.

AUFGABENSTELLUNG:

Gib jeweils die minimale und maximale Anzahl an möglichen Wendestellen an.

Minimale Anzahl:

Maximale Anzahl: _____

MAXIMALE ANZAHL AN WENDESTELLEN

Gegeben ist die Funktion f mit $f(x) = ax^4 + bx^2 + cx$, wobei $a, b, c \in \mathbb{R}$ sind.

AUFGABENSTELLUNG:

Gib jeweils die minimale und maximale Anzahl an möglichen Wendestellen an.

Minimale Anzahl:

Maximale Anzahl:

MAXIMALE ANZAHL AN WENDESTELLEN

Gegeben ist die Funktion f mit $f(x) = ax^3 + bx^2 + cx + d$, wobei $a, b, c \in \mathbb{R}$ sind.

AUFGABENSTELLUNG:

Gib jeweils die minimale und maximale Anzahl an möglichen Wendestellen an.

Minimale Anzahl:

Maximale Anzahl:

LOKALES MAXIMUM

Eine Polynomfunktion f besitzt an der Stelle $x_0=1$ ein lokales Maximum. Der Wert der Funktion an dieser Stelle ist 4.

AUFGABENSTELLUNG:

Kreuze die beiden zutreffenden Aussagen an!

f''(1)=0
f(4) = 1
f(1) = 4
f'(1) = 0
f'(4) = 0

M_0037

ABLEITUNGSFUNKTION

Für die Ableitungsfunktion einer Funktion f gilt: f'(x) = -x + 1

AUFGABENSTELLUNG:

Kreuze die beiden zutreffenden Aussagen an!

f ist eine Polynomfunktion zweiten Grades
f ist im Intervall $]-\infty;1[$ streng monoton fallend
f hat die Nullstelle 1
f hat die lokale Minimumstelle 1
Die Tangente an den Funktionsgraphen von f im Punkt $ig(0ig f(0)ig)$ hat die Steigung 1

