Finanzmathematik

Rookie Level .. 3
 Ansparpläne * (B_382) ... 3
 Hotelrenovierung (1) (B_210) .. 3
 Sonnensegel (B_091) ... 3
 Maschinenring (B_182) ... 4
 Baugrundstücke * (B_090) .. 4
 Verzinsung * (A_256) .. 5
 Anschaffungen (B_134) ... 5
 Erbschaft * (B_264) ... 6
 Öffentlicher Verkehr in Wien * (B_515) .. 7
 Ansparplan * (B_185) ... 8

Pro Level .. 9
 Liftgesellschaft (1) * (B_434) ... 9
 Pensionsvorsorge * (B_420) ... 9
 Seegrundstück * (B_415) .. 10
 Startkapital (B_146) .. 10
 Kredit für einen Wohnungskauf * (B_223) ... 11
 Hotelerweiterung * (B_106) .. 11
 Renovierungskredit * (B_350) .. 12
 Segelboot (B_117) ... 13
 Sparbuch * (B_222) .. 13
 Interneteinkäufe (B_216) ... 13
 Küchenkauf* (B_452) .. 14
 Erweiterung der Produktpalette (B_142) ... 14
 Kaffeautomat * (B_285) .. 14
 Autokauf (1) * (B_459) .. 15
 Lagerhalle * (B_484) .. 16
 Produktionserweiterung_2 (B_337) ... 16
 Obsthandler * (B_489) ... 17
 Wohnanlage * (B_502) .. 17
 Anschaffungen (B_134) ... 18
 Reisebus * (B_516) .. 19
 Zinsentwicklung * (B_528) ... 20

All Star Level .. 21
 Autokauf (2) (B_197) ... 21
 Geraetekauf (B_211) ... 21
 Kreditkonditionen (B_122) ... 22
 Photovoltaik (1) (B_201) .. 22
 Rücklage (B_125) .. 22
<table>
<thead>
<tr>
<th>Kapitel</th>
<th>Seite</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wohnungsrenovierung (B_139)</td>
<td>23</td>
</tr>
<tr>
<td>Sparkonto (B_120)</td>
<td>23</td>
</tr>
<tr>
<td>Stallbaufinanzierung (B_170)</td>
<td>24</td>
</tr>
<tr>
<td>Lösungen</td>
<td>25</td>
</tr>
<tr>
<td>Rookie Level</td>
<td>25</td>
</tr>
<tr>
<td>Pro Level</td>
<td>30</td>
</tr>
<tr>
<td>All Star Level</td>
<td>40</td>
</tr>
</tbody>
</table>
Rookie Level

Ansparplaene * (B_382)

- Erstellen Sie eine Formel zur Berechnung von E, wenn B, n und i bekannt sind.
 \[E = \]
- Formen Sie diese Formel nach dem Zinssatz i um.

b) Bernhard möchte auf einem Konto in 4 Jahren € 4.000 angespart haben. Dazu will er sofort € 1.000 auf das Konto legen, nach 1 Jahr € 1.500 und nach 3 Jahren den nötigen Restbetrag R. Der Zinssatz beträgt 3 % p.a.

- Veranschaulichen Sie diesen Zahlungsstrom auf einer Zeichnung.
- Erklären Sie in Worten (ohne Rechnung), warum der Restbetrag R kleiner als € 1.500 sein muss.
- Berechnen Sie den Restbetrag R.

c) Cornelia führt für ihren Ansparplan folgende Rechnung durch:
 \[5000 \cdot 1,035^3 + 1000 \cdot 1,035^2 = 7009,68 \]

- Beschreiben Sie diesen Ansparplan hinsichtlich der Zahlungen, des Zinssatzes, der Verzinsungsdauer und des angesparten Geldbetrags in Worten.

- Ermitteln Sie die Höhe dieses gleichbleibenden Betrags, wenn die Beiträge nicht verzinst werden.
- Ermitteln Sie die Höhe dieses gleichbleibenden Betrags, wenn alle Beiträge zu einem Zinssatz von 0,25 % p.m. veranlagt werden.

Hotelrenovierung (1) (B_210)

b) Für weitere Renovierungsarbeiten benötigt der Hotelbesitzer einen Kredit in Höhe von € 80.000. Seine Hausbank bietet ihm an, dass er den Kreditbetrag innerhalb von 5 Jahren in Form von nachschüssigen Jahresraten in Höhe von € 17.930 begleichen kann.

- Berechnen Sie den effektiven Jahreszinssatz, der diesem Kredit zugrunde liegt.

Der Hotelbesitzer möchte anstelle der Jahresraten den Kredit bei gleicher Laufzeit durch nachschüssige Semesterraten in Höhe von € 8.560 begleichen.

- Argumentieren Sie, warum sich bei dieser Zahlungsvariante ein höherer effektiver Jahreszinssatz ergibt.

Sonnensegel (B_091)

- Berechnen Sie, wie viele Raten bei einem Zinssatz von 2,4 % p.a. von der Firma zu entrichten sind.
Maschinenring (B_182)

a) Man geht davon aus, dass der jetzige Mährescher noch genau 10 Jahre verwendet werden kann. Daher plant man, dann einen neuen Mährescher um einen voraussichtlichen Kaufpries von € 150.000 zu erwerben.
 Für die Anschaffung haben die Betriebe gemeinsam bereits € 30.000 an Rücklagen gebildet und wollen den Rest in Form von vorschüssigen Jahresraten ansparen.
 Der Zinssatz wird mit 1,5 % p. a. angenommen.

 – Veranschaulichen Sie das Finanzierungskonzept mithilfe einer Zeitlinie.
 – Berechnen Sie die Höhe der Jahresraten.

Es wird überlegt, mit der Ratenzahlung erst in 5 Jahren zu beginnen.

 – Argumentieren Sie, warum die neuen Raten für die restlichen 5 Jahre in diesem Fall mehr als doppelt so hoch sein müssen, als wenn sofort mit dem Ansparen begonnen wird.

Baugrundstücke * (B_090)

a) Herr Pfaffer hat ein Grundstück um € 226.000 gekauft. Nach der Umbauung in ein Bau-
 grundstück kann er es 4 Jahre später um € 753.000 verkaufen.

 – Ermitteln Sie den mittleren jährlichen Zinssatz des eingesetzten Kapitals ohne Berück-
 sichtigung von Spesen, Gebühren und Steuern.

b) Frau Maler möchte ein Baugrundstück verkaufen. Sie bekommt zwei Angebote.

 Herr Altmann bietet € 150.000 sofort bei Vertragsabschluss und € 50.000 nach 2 Jahren.
 Frau Bogner bietet € 202.000 ein Jahr nach Vertragsabschluss.

 Frau Maler vergleicht die beiden Angebote.

 – Weisen Sie für einen Zinssatz von 3 % p. a. nach, dass sich die beiden Angebote zum
 Zeitpunkt des Vertragsabschlusses um rund € 1.013 unterscheiden.

 Für die beiden Angebote wird folgende Gleichung aufgestellt:
 \[150000 \cdot x^2 + 50000 \cdot x = 202000 \cdot x\]
 Eine Lösung dieser Gleichung ist \(x = 1,0198\).

 – Interpretieren Sie die Bedeutung von \(x\) im gegebenen Sachzusammenhang.

c) Herr Müller nimmt für den Kauf eines Baugrundstücks einen Kredit in Höhe von € 100.000
 auf. Der vereinbarte Zinssatz beträgt 3 % p. a.

 Der Kredit soll durch die auf der nachstehenden Zeitchse dargestellten Zahlungen voll-
 ständig getilgt werden.

 ![Diagramm der Zahlungen]

 Die Zahlungen \(R\) können als nachschüssige Rente aufgefasst werden.

 – Markieren Sie auf der Zeitchse den Bezugszeitpunkt für den Barwert dieser nach-
 schüssigen Rente.
 – Berechnen Sie die Höhe der Zahlungen \(R\).
d) Frau Marth nimmt für den Kauf eines Baugrundstücks einen Kredit in Höhe von € 120.000 mit jährlich nachschüssigen Kreditrückzahlungen auf. Der vereinbarte Zinssatz beträgt 2,5 % p.a.

Für die ersten zwei Jahre vereinbart Frau Marth Sonderbedingungen, die im nachstehenden Tilgungsplan dargestellt sind.

<table>
<thead>
<tr>
<th>Jahr</th>
<th>Zinsanteil</th>
<th>Tilgungsanteil</th>
<th>Annuität</th>
<th>Restschuld</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td>€ 120.000,00</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td>€ 0,00</td>
<td>€ 123.000,00</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td>€ 0,00</td>
<td>€ 123.000,00</td>
</tr>
</tbody>
</table>

- Ermitteln Sie die Beträge für die beiden grau markierten Zeilen im obigen Tilgungsplan.

Ab dem Jahr 3 werden jährliche Annuitäten in Höhe von € 10.000 bezahlt.

- Berechnen Sie, wie viele volle Annuitäten in Höhe von € 10.000 bezahlt werden müssen.

**Verzinsung *(A_256)*

a) Auf einem Konto werden € 3.000 angelegt.

Für eine Zeitspanne von 3 Jahren wird dieser Betrag mit 5 % pro Jahr verzinst, anschließend für 2 Jahre mit 1 % pro Jahr.

- Ermitteln Sie den Kontostand nach 5 Jahren K_v.

Bei einem konstanten Jahreszinssatz i wäre der Kontostand nach 5 Jahren auf den selben Wert K_v angewachsen.

- Bestimmen Sie diesen Jahreszinssatz i.

**Anschaffungen *(B_134)*

a) Für einen Kredit in Höhe von € 50.000 bietet eine Bank bei einer Laufzeit von 10 Jahren und Rückzahlung durch nachschüssige Monatsraten einen effektiven Jahreszinssatz von 4,5 %.

- Berechnen Sie die Höhe der Monatsraten.

b) Das Angebot einer anderen Bank für die Rückzahlung eines Kredits in Höhe von € 50.000 ist ausschnittweise im folgenden Tilgungsplan dargestellt:

<table>
<thead>
<tr>
<th>Semester</th>
<th>Zinsanteil</th>
<th>Tilgungsanteil</th>
<th>Annuität</th>
<th>Restschuld</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td>€ 50.000</td>
</tr>
<tr>
<td>1</td>
<td>€ 1.112,62</td>
<td>€ 11.387,38</td>
<td>€ 12.500</td>
<td>€ 38.612,62</td>
</tr>
<tr>
<td>2</td>
<td>€ 859,22</td>
<td>€ 11.640,78</td>
<td>€ 12.500</td>
<td>€ 28.971,84</td>
</tr>
<tr>
<td>3</td>
<td>€ 600,19</td>
<td>€ 11.899,81</td>
<td>€ 12.500</td>
<td>€ 15.072,03</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td>€ 12.500</td>
<td></td>
</tr>
</tbody>
</table>

- Zeigen Sie, dass dieser Tilgungsplan ein effektiver Jahreszinssatz von rund 4,5 % zugrunde liegt.

- Vervollständigen Sie im obigen Tilgungsplan die Zeile für das 4. Semester.

Die Rückzahlung des Kredits soll am Ende des 5. Semesters durch eine Restzahlung abgeschlossen werden.

- Berechnen Sie die Höhe dieser Restzahlung.
c) Der Unternehmer nimmt einen weiteren Kredit in Höhe von € 10.000 auf, den er innerhalb eines Jahres zurückzahlen möchte.
Er kann zwischen 2 Rückzahlungsvarianten bei gleichem Jahreszinssatz wählen:
• 1. Variante: 2 nachschüssige Semesterraten in Höhe von € 5.000 und 1 Restzahlung
• 2. Variante: 4 nachschüssige Quartalsraten in Höhe von € 2.500 und 1 Restzahlung

- Erklären Sie, warum 2 nachschüssige Quartalsraten von € 2.500 nicht genau einer nachschüssigen Semesterrate von € 5.000 entsprechen.
- Erklären Sie, bei welcher Variante der Unternehmer eine höhere Restzahlung zu tätigen hat.

Erbschaft * (B_264)
a) Armin erhält ein Erbe in Höhe von € 50.000, das in Form von 3 Beiträgen in den nächsten 5 Jahren ausbezahlt wird.
Die Höhe der Auszahlungen Z kann mit der nachstehenden Gleichung berechnet werden:

$$ 50.000 = \frac{20.000}{1,03^2} + \frac{Z}{1,03^4} + \frac{Z}{1,03^5} $$

1) Lesen Sie den zugehörigen Jahreszinssatz ab.
2) Veranschaulichen Sie alle in der Gleichung vorkommenden Auszahlungen auf der nachstehenden Zeltachse.

\[\begin{array}{c|c}
\text{€ 50.000} & \text{Zeit in Jahren} \\
\hline
0 & 1 \\
1 & 2 \\
2 & 3 \\
3 & 4 \\
4 & 5 \\
\end{array} \]

3) Berechnen Sie die Höhe der Auszahlungen Z.

In den nächsten 5 Jahren will sie nun jeweils am Ende jedes Monats einen gleich hohen Betrag abheben, sodass nach diesen 5 Jahren vom angelegten Geld ein Betrag in Höhe von € 20.000 vorhanden ist.

Jutta überlegt, dass sie monatlich rund $\frac{€ 50.000 - € 20.000}{60} = € 500$ abheben kann.

1) Begründen Sie, warum die tatsächlichen Monatsraten größer als € 500 sind.
2) Berechnen Sie den zugehörigen äquivalenten Monatszinssatz.
3) Berechnen Sie die Höhe dieser tatsächlichen Monatsraten.
c) Auf den unten stehenden Zeichnungen sind Erbschaftsauszahlungen dargestellt.

1) Kreuzen Sie diejenige Auszahlungsvariante an, die bei einem positiven Zinssatz den größten Barwert hat. [1 aus 5]

Oeffentlicher Verkehr in Wien *(B_515)*

a) In Wien kostet die Jahreskarte für öffentliche Verkehrsmittel bei einmaliger Zahlung 365. Alternativ dazu kann die Jahreskarte auch durch 12 monatliche Zahlungen zu je 33 bezahlt werden.

1) Berechnen Sie denjenigen effektiven Jahreszinssatz, bei dem 12 vorschüssige Monatsraten in Höhe von 33 einem Barwert von 365 entsprechen.
Ansparplan * (B.185)

1) Lesen Sie aus der obigen Grafik die Höhe und die Dauer der jährlichen Zinssätze ab.
2) Berechnen Sie den mittleren jährlichen Zinssatz.
3) Berechnen Sie die Höhe desjenigen Betrags, den Monika jetzt anlegen muss, um ihr Sparziel von € 20.000 in 12 Jahren zu erreichen.

1) Vorschlagen Sie Monikas Zahlungsplan und das Sparziel auf einer Zeichnung.
2) Berechnen Sie die Höhe der Einzahlung Z.

b) Monika überlegt, 12 Jahre lang zu Beginn jedes Jahres einen gleich hohen Betrag einzuzahlen, um ihr Sparziel von € 20.000 in 12 Jahren bei einem fixen Zinssatz von 2 % p.a. zu erreichen.

1) Berechnen Sie die Höhe des jährlichen Einzahlungsbetrags R.

Sie überlegt, nicht zu Beginn jedes Jahres den Jahresbetrag einzuzahlen, sondern zu Beginn jedes Monats $\frac{1}{12}$ des Jahresbetrags.

2) Argumentieren Sie, dass sie ihr Sparziel damit nicht in der vorgesehenen Zeit erreicht.
Pro Level

Liftgesellschaft (1) * (B_434)

a) Für die Finanzierung eines Sessellifts hat eine Liftgesellschaft einen Kredit in Höhe von € 1,4 Mio. aufgenommen. Diesen Kredit zahlt die Liftgesellschaft durch nachschüssige Jahrerätten in Höhe von € 90.000 bei einer Verzinsung von 4 % p. a. zurück. (Spesen und Gebühren werden nicht berücksichtigt.)

- Berechnen Sie, wie viele volle Jahrerätten zu zahlen sind.

Nach 5 Jahren Kredittilgung gerät die Liftgesellschaft in Zahlungsschwierigkeiten und setzt die Rückzahlungen aus.

b) Die Liftgesellschaft bildet eine Rücklage und veranlagt dafür 3 Beträge zu unterschiedlichen Zeitpunkten. Der Gesamtwert der Rücklage nach 6 Jahren wird durch folgende Rechnung ermittelt:

\[(50000 \cdot (1.035^1 + 30000) \cdot 1.035^1 + 80000 \cdot 1.035 = 178096.05)\]

- Beschreiben Sie, zu welchen Zinssätzen der Betrag in Höhe von € 50.000 verzinst wird.
- Geben Sie an, wie lange die jeweiligen Zinssätze gelten.
- Tragen Sie die 3 Beträge und den Gesamtwert der Rücklage nach 6 Jahren auf der nachstehenden Zeichnung ein.

![Diagramm]

Pensionsvorsorge * (B_420)

a) Er zahlt 15 Jahre lang monatlich vorschüssig € 400 auf ein mit 0,27 % p. m. verzinstes privates Pensionskonto und lässt sein Geld anschließend 25 Jahre bei gleichbleibendem Zinssatz angelegt.

- Berechnen Sie seinen privaten Pensionsbetrag nach 40 Jahren.

b) Eine Bank unterbreitet ihm folgenden Vorschlag:

Durch Einzahlungen von € 20.000 sofort, € 30.000 nach 5 Jahren und € 40.000 nach 15 Jahren garantiert sie ihm nach insgesamt 40 Jahren ein angespartes Kapital von € 200.000.

- Veranschaulichen Sie diesen Zahlungströme (Einzahlungen und angespartes Kapital) auf einer Zeichnung.
- Berechnen Sie den zugehörigen Jahreszinssatz.

c) Er hat auf seinem privaten Pensionskonto, das mit 2 % p. a. verzinst wird, einen Betrag in Höhe von € 200.000 angespart.

Nun vergleicht er zwei Auszahlungsvarianten:

Variante 1: Er hebt am Ende jedes Jahres € 12.000 ab.
Variante 2: Er hebt am Ende jedes Jahres € 4.000 ab.

- Berechnen Sie, wie oft er bei Variante 1 den vollen Betrag abheben könnte.
- Erkläre, warum bei Variante 2 das angesparte Kapital am Pensionskonto erhalten bleibt.
Seegrundstück *(B.415)*

Für den Kauf eines Seegrundstücks benötigt der Käufer einen Kredit in Höhe von € 865.000. (Spesen und Gebühren werden nicht berücksichtigt.)

a) Ein Kreditinstitut macht folgendes Angebot:
Der Kreditnehmer bezahlt am Ende jedes Jahres eine Rate in Höhe von € 100.000 bei einem Zinssatz von 6,75 % p.a.

- Berechnen Sie, wie viele Raten der Kreditnehmer bezahlen muss.
- Berechnen Sie die Höhe des ein Jahr nach der letzten vollen Rate fälligen Restbetrags.

b) Ein anderes Kreditinstitut stellt einen Tilgungsplan zur Rückzahlung des Kredits auf. Ein Ausschnitt dieses Tilgungsplans ist in der nachstehenden Tabelle dargestellt:

<table>
<thead>
<tr>
<th>Jahr</th>
<th>Zinsanteil</th>
<th>Tilgungsanteil</th>
<th>Annuität</th>
<th>Restschuld</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td>€ 865.000</td>
</tr>
<tr>
<td>1</td>
<td>€ 51.467,50</td>
<td>€ 53.532,50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>€ 48.282,32</td>
<td>€ 48.282,32</td>
<td></td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Ermitteln Sie die Annuität und die Restschuld im Jahr 1.

Im Jahr 2 sind die beiden Einträge in den Spalten „Zinsanteil“ und „Tilgungsanteil“ bis auf das Vorzeichen gleich.

- Beschreiben Sie die Auswirkungen auf die Restschuld im Jahr 2.

c) Ein weiteres Angebot zur Rückzahlung des Kredits innerhalb von 10 Jahren kann mithilfe folgender Zeitachse dargestellt werden:

![Zeitachse](attachment:image)

- Beschreiben Sie den Rückzahlungsvorgang des in der Zeitachse dargestellten Angebots in Worten.
- Berechnen Sie die Ratenhöhe R bei einem Zinssatz von 6 % p.a.

Startkapital *(B.146)*

- Veranschaulichen Sie den Zahlungsstrom auf einer Zeitachse.
- Berechnen Sie, über welchen Betrag Simon nach diesen 10 Jahren verfügen kann.

Simon überlegt durch welche nachschüssigen Monatsraten R er in 10 Jahren denselben Betrag hätte ansparen können.

- Ermitteln Sie die Höhe dieser Rate R.
b) Simon benötigt zusätzlich zu seinen Ersparnissen ein Kapital in Höhe von € 45.000. Die Bank bietet ihm einen entsprechenden Kredit mit dem folgenden Tilgungsplan:

<table>
<thead>
<tr>
<th>Jahr</th>
<th>Zinsanteil</th>
<th>Tilgungsanteil</th>
<th>Annuität</th>
<th>Restschuld</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td>€ 45.000,00</td>
</tr>
<tr>
<td>1</td>
<td>€ 1.665,00</td>
<td>€ 9.000,00</td>
<td>€ 10.665,00</td>
<td>€ 36.000,00</td>
</tr>
<tr>
<td>2</td>
<td>€ 1.332,00</td>
<td>€ 9.000,00</td>
<td>€ 10.332,00</td>
<td>€ 27.000,00</td>
</tr>
<tr>
<td>3</td>
<td>€ 999,00</td>
<td>€ 9.000,00</td>
<td>€ 9.999,00</td>
<td>€ 18.000,00</td>
</tr>
<tr>
<td>4</td>
<td>€ 666,00</td>
<td>€ 9.000,00</td>
<td>€ 9.666,00</td>
<td>€ 9.000,00</td>
</tr>
<tr>
<td>5</td>
<td>€ 333,00</td>
<td>€ 9.000,00</td>
<td>€ 9.333,00</td>
<td>€ 0,00</td>
</tr>
</tbody>
</table>

- Ermitteln Sie die fehlende Zahl im Tilgungsplan.

In einem anderen Angebot soll diese Schuld bei einem Zinssatz von 4 % p. a. durch 6 nachschüssige Jahre anfallen. (Spesen und Gebühren werden nicht berücksichtigt.)

- Berechnen Sie die zugehörige Ratenhöhe.

Kredit für einen Wohnungskauf* (B.223)

- Ermitteln Sie den zu 3 % p. a. äquivalenten Monatszins.
- Berechnen Sie die Höhe der Monatsraten.

b) Bank B bietet Frau Simon einen Kredit über € 120.000 an, der in 15 Jahren durch nachschüssige Quartalsraten in Höhe von je € 2.650 zu tilgen ist. Eine Bearbeitungsgebühr von 2 % der Kreditsumme wird bei Auszahlung des Kredits von der Kreditsumme abgezogen. (Weitere Spesen und Gebühren sind in den Raten berücksichtigt.)

- Berechnen Sie den effektiven Jahreszinsatz dieses Kredits.

c) Bank C bietet Frau Simon einen Kredit über € 120.000 an, den sie durch nachschüssige Quartalsraten mit dem Zinssatz 1 % p. q. zurückzahlen soll. Die Bank legt ihr den folgenden Tilgungsplan vor:

<table>
<thead>
<tr>
<th>Quartal</th>
<th>Zinsanteil</th>
<th>Tilgungsanteil</th>
<th>Annuität</th>
<th>Restschuld</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td>€ 120.000,00</td>
</tr>
<tr>
<td>1</td>
<td>€ 1.200,00</td>
<td>€ 960,26</td>
<td>€ 2.160,26</td>
<td>€ 119.013,74</td>
</tr>
</tbody>
</table>

- Dokumentieren Sie, wie der Zinssatz 1 % p. q. aus dem Tilgungsplan ermittelt werden kann.
- Berechnen Sie die Laufzeit des Kredits.
- Erklären Sie den Zusammenhang zwischen Zinsanteil, Tilgungsanteil und Annuität.

Hoteltereuerung* (B.106)

d) Um die Investition durchführen zu können, ist ein Bankkredit in Höhe von € 800.000 notwendig. Für die Rückzahlung werden eine Laufzeit von 15 Jahren und nachschüssige Semesterraten in Höhe von jeweils € 38.100 vereinbart.

- Berechnen Sie den effektiven Jahreszinsatz für dieses Finanzierungsmode
Renovierungskredit* (B.350)

Frau Eberharder muss für die Renovierung ihrer Wohnung einen Kredit in Höhe von € 30.000 aufnehmen. Dazu holt sie verschiedene Angebote von Privatpersonen und von Banken ein. (Spesen und Gebühren werden nicht berücksichtigt.)

a) Eine Bekannte bietet Frau Eberharder privat einen Kredit in Höhe von € 30.000 zu einem Zinssatz von 2 % p. a. an.

Frau Eberharder soll diesen Kredit folgendermaßen zurückzahlen:
€ 8.000 nach einem Jahr und 2 gleich hohe Raten, eine davon nach 3 Jahren und die andere nach 4 Jahren.

– Stellen Sie diese Zahlungen auf einer Zeitachse dar.
– Berechnen Sie die Ratenhöhe.
– Erklären Sie, warum sich diese Ratenhöhe verringert, wenn beide Raten früher bezahlt werden.

b) Frau Eberharder recherchiert im Internet Angebote von Banken für Kredite in Höhe von € 30.000 mit einer Laufzeit von 60 Monaten.

Eine Bank bietet einen Kredit mit einer monatlichen Rate in Höhe von € 559,11 bei einem Zinssatz von 4,58 % p. a.

– Ermitteln Sie den zugehörigen äquivalenten Monatszinssatz.
– Überprüfen Sie nachweislich, ob es sich um eine vorschüssige oder eine nachschüssige Ratenzahlung handelt.

c) Eine Bank bietet Frau Eberharder einen Kredit in Höhe von € 30.000 an, den sie in 10 nachschüssigen Halbjahresraten in Höhe von je € 3.480 zurückzahlen muss.

Für diesen Kredit kann Frau Eberharder einen Annuitätentzuschuss bei der Landesregierung beantragen, d. h., 10 % jeder Halbjahresrate werden vom Land übernommen.

– Berechnen Sie die Höhe der Halbjahresraten, die Frau Eberharder unter Berücksichtigung des Annuitätentzuschusses bezahlen muss.
– Ermitteln Sie den effektiven Jahreszinssatz, der sich für Frau Eberharder unter Berücksichtigung des Annuitätentzuschusses ergibt.
– Ermitteln Sie die Höhe desjenigen Annuitätentzuschusses in Euro, bei dem sich für Frau Eberharder ein effektiver Jahreszinssatz von null Prozent ergeben würde.

d) Frau Eberharder vereinbart für einen Kredit mit einer Bank Sonderkonditionen.

<table>
<thead>
<tr>
<th>Semester</th>
<th>Zinsanteil</th>
<th>Tilgungsanteil</th>
<th>Annuität</th>
<th>Restschuld</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td>€ 30.000,00</td>
</tr>
<tr>
<td>1</td>
<td>€ 660,00</td>
<td>€ –660,00</td>
<td>€ 0,00</td>
<td>€ 30.660,00</td>
</tr>
<tr>
<td>2</td>
<td>€ 674,52</td>
<td>€ 0,00</td>
<td>€ 674,52</td>
<td>€ 30.660,00</td>
</tr>
<tr>
<td>3</td>
<td>€ 674,52</td>
<td>€ 5.325,48</td>
<td>€ 6.000,00</td>
<td>€ 25.334,52</td>
</tr>
</tbody>
</table>

– Interpretieren Sie die Bedeutung der beiden auftretenden Beträge in Höhe von € 0,00 im gegebenen Sachzusammenhang.
Segelboot (B_117)

a) Der Verkäufer schlägt folgende Zahlungsvariante vor:
 Anzahlung in Höhe von € 6.000 und 5 Jahre lang (ab dem Kaufzeitpunkt gerechnet)
 nachschüssige Jahresraten in Höhe von jeweils € 1.200 bei einem jährlichen Zinssatz von i

 - Stellen Sie diese Zahlungsvariante mithilfe einer Zeitlinie graphisch dar.
 - Erstellen Sie eine Formel zur Berechnung des Barwerts B des Segelboots.

 \[B = \ldots \]

b) Der Verkäufer ändert die Konditionen: Er veranschlagt den Barwert des Bootes mit
 € 10.800 und verlangt eine Anzahlung in Höhe von € 6.000 sowie 3 nachschüssige Jah-
 resraten in Höhe von jeweils € 1.200. Der Rest soll ab dem 4. Jahr durch 4 nachschüssi-
 ge Jahresraten der Höhe R beglichen werden.

 - Berechnen Sie die Ratehöhe R, wenn der Zinssatz 8 % p. a. beträgt.

 c) Um das Boot neu lackieren zu lassen, borgt sich der Käufer € 5.000, die er in Form von
 nachschüssigen Quartalsraten von jeweils € 300 bei einem Zinssatz von 6 % p. a. zurück-
 zahlt.

 - Berechnen Sie, wie viele volle Quartalsraten zu zahlen sind.
 - Berechnen Sie, welcher Restbetrag 1 Quartal nach der letzten Vollrate anfällt.

Sparbuch * (B_222)

a) Von einem Sparbuch soll über 10 Jahre hinweg jeweils am Monatsende ein Betrag von
 € 200 abgezogen werden. Unmittelbar nach der letzten Abhebung sollen noch € 1.500
 auf dem Sparbuch verbleiben. Der Zinssatz beträgt 1,5 % p. a.

 - Berechnen Sie die Höhe desjenigen Betrags, der zu Beginn auf das Sparbuch einbezahlt
 werden muss (ohne Berücksichtigung der K ES).

b) AUF ein Sparbuch wird einmalig ein Betrag von € 10.000 und 5 Jahre später einmalig ein
 Betrag x einbezahlt. Nach insgesamt 6 Jahren soll ein Betrag von € 20.000 zur Verfügung
 stehen. Der Zinssatz beträgt 1,5 % p. a.

 - Erstellen Sie eine Zeitlinie, die diesen Sachverhalt darstellt.
 - Berechnen Sie die Höhe des Betrags x ohne Berücksichtigung der K ES.
 - Begründen Sie, warum sich die Höhe des Betrags x verringert, wenn er bereits nach
 2 Jahren einbezahlt wird.

c) Auf einem Sparbuch stehen zu Jahresbeginn € 25.000 zur Verfügung. In den folgenden
 12 Jahren sollen jeweils am Jahresende € 2.000 abgezogen werden können, sodass das
 Guthaben zur Gänze aufgebraucht ist.

 - Berechnen Sie den entsprechenden Jahreszinssatz (ohne Berücksichtigung der K ES).

Interneteinkäufe (B_216)

b) Ein Versandhaus bietet seinen Internetkunden die Möglichkeit, ihre Rechnung durch Re-
 tanzahlung zu begleichen. Die Rückzahlung erfolgt monatlich vorschüssig. Die erste Rate
 ist einen Monat nach Kaufabschluss fällig.

 - Erkläre, warum der als vorschüssig angegebene Rückzahlungsmodus auch als
 nachschüssige Rente aufgefasst werden kann.

Ein Betrag von € 250 wird durch 33 Monatsraten beglichen. Die ersten 22 Raten betragen
jeweils € 13, die letzte Rate € 17,22.

 - Berechnen Sie den effektiven Jahreszinssatz, der diesem Zahlungsmodus zugrunde
 liegt.
Küchenkauf* (B_452)

a) Um sich die Küche leisten zu können, hat sie vor 7 Jahren, vor 4 Jahren und vor 1 Jahr jeweils € 3.000 auf ein Sparbuch mit fixem Zinssatz eingezahlt. Nun befinden sich € 10.000 auf dem Sparbuch.

1) Berechnen Sie den zugrunde liegenden Jahreszinssatz.

Bei diesem Spanvorgang wurden jährlich 25 % Kapitalertragssteuer (KESt) abgezogen.

2) Berechnen Sie den Jahreszinssatz des Sparbuches vor Abzug der KESt.

1) Berechnen Sie den äquivalenten Semesterzinssatz.

2) Vervollständigen Sie die Zahlen für das Semester 1 und 2 des nachfolgenden Tilgungsplans.

<table>
<thead>
<tr>
<th>Semester</th>
<th>Zinsanteil</th>
<th>Tilgungsanteil</th>
<th>Semesterrate</th>
<th>Restschuld</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>€ 20.000</td>
</tr>
<tr>
<td>1</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>2</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
</tbody>
</table>

3) Erklären Sie, warum die folgende Behauptung richtig ist: „Eine Verdopplung der Semesterrate führt nicht zu einer Verdopplung des Tilgungsanteils."

1) Erstellen Sie eine Formel zur Berechnung der Restschuld S nach t Jahren.

$$S = \ldots$$

Erweiterung der Produktpalette (B_142)

b) Der Unternehmer benötigt einen Kredit in Höhe von € 400.000. Die Rückzahlung erfolgt durch nachschüssige Monatsraten der Höhe R über einen Zeitraum von 10 Jahren bei einem Jahreszinssatz von 3,7 %.

- Veranschaulichen Sie den Kreditbetrag und die Raten auf einer Zeichnung.
- Berechnen Sie die Höhe der Monatsraten.

Kaffeeautomat* (B_285)

a) Die Kosten für den Kaffeeautomaten betragen € 5.500.

Der Elternverein erhält folgendes Leasingangebot:
- Anzahlung: € 1.000 bei Vertragsabschluss
- 48 Monatsraten zu je € 100
- Die Ratenzahlungen beginnen einen Monat nach Vertragsabschluss.
- Der Restwert in Höhe von € 900 ist gleichzeitig mit der letzten Rate zu bezahlen.

1) Berechnen Sie den effektiven Jahreszinssatz für dieses Angebot.
Autokauf (1) * (B.459)

Frau Kopecek möchte ein neues Auto mit einem Listenpreis von € 17.100 kaufen. Dabei stehen verschiedene Finanzierungsmöglichkeiten zur Auswahl.

1) Veranschaulichen Sie die Zahlungen und den Listenpreis auf der nachstehenden Zeitcharte.

Der Händler behauptet, dass es sich bei dieser Finanzierung um eine „Null-Prozent-Finanzierung“ handelt.

Unter einer „Null-Prozent-Finanzierung“ versteht man, dass keine Zinsen verrechnet werden.

2) Zeigen Sie, dass die Behauptung des Händlers richtig ist.

1) Erstellen Sie eine Gleichung zur Berechnung von R.

2) Berechnen Sie R.

1) Vervollständigen Sie den nachstehenden Tilgungsplan für die Jahre 1 und 2.

<table>
<thead>
<tr>
<th>Jahr</th>
<th>Zinsanteil</th>
<th>Tilgungsanteil</th>
<th>Annuität</th>
<th>Restschuld</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>€ 17.100</td>
</tr>
<tr>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

2) Berechnen Sie die Höhe der Restzahlung, mit der die Schuld am Ende des 3. Jahres vollständig getilgt ist.

d) Bei Barzahlung gewährt der Händler 8 % Preisnachlass vom Listenpreis.

1) Berechnen Sie den Preis des Autos bei Barzahlung.

Barzahlung und Ratenfinanzierung sind bei einem bestimmten Jahreszinssatz gleichwertig.

2) Berechnen Sie diesen Jahreszinssatz.
Lagerhalle *(B_484)*

Für den Kauf einer Lagerhalle benötigt ein Unternehmen € 180.000. Es werden verschiedene Möglichkeiten für die Finanzierung überprüft.

a) Das Unternehmen konnte in den vergangenen Jahren Rücklagen bilden, die mit einem positiven jährlichen Zinssatz i verzinst werden:

Vor 4 Jahren konnte das Unternehmen € 50.000 zurücklegen, vor 3 Jahren konnte es € 70.000 zurücklegen.

Es soll derjenige Betrag X ermittelt werden, der für den Kauf der Lagerhalle heute noch fehlt.

1) Erstellen Sie eine Formel zur Berechnung des Betrags X.

\[X = \ldots \]

2) Berechnen Sie den Betrag X für den Zinssatz \(i = 2.5 \% \) p. a.

b) Das Unternehmen kann den Kauf der Lagerhalle mit einem Kredit in Höhe von € 180.000 finanzieren.

Der Kredit soll durch 40 nachschüssige Quartalsraten bei einem Zinssatz von 1 % p. a. getilgt werden.

1) Berechnen Sie die Höhe einer Quartalsrate.

2) Ein anderes Kreditangebot enthält Sonderkonditionen für die Jahre 1 und 2.

Diese Sonderkonditionen können dem Tilgungsplan entnommen werden:

<table>
<thead>
<tr>
<th>Jahr</th>
<th>Zinsanteil</th>
<th>Tilgungsanteil</th>
<th>Annuität</th>
<th>Restschuld</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>€ 180.000</td>
</tr>
<tr>
<td>1</td>
<td>€ 5.400</td>
<td>€ –5.400</td>
<td>€ 0</td>
<td>€ 185.400</td>
</tr>
<tr>
<td>2</td>
<td>€ 5.562</td>
<td></td>
<td></td>
<td>€ 180.000</td>
</tr>
</tbody>
</table>

1) Ermitteln Sie den Jahreszinssatz für dieses Kreditangebot.

2) Erklären Sie mithilfe der Einträge im Tilgungsplan, warum der Tilgungsanteil im Jahr 1 negativ ist.

3) Vervollständigen Sie die Zeile für das Jahr 2 im obigen Tilgungsplan.

Produktionserweiterung_2 (B_337)

b) Für eine neue Produktionshalle wird ein Kredit benötigt. Die ersten 5 Jahre garantiert die Bank einen fixen Jahreszinssatz \(i \), für die restliche Laufzeit wird ein Jahreszinssatz \(i' \) angenommen.

Die nachstehende Tabelle zeigt einen Auszug aus dem Tilgungsplan der Annuitäten-

<table>
<thead>
<tr>
<th>Jahr</th>
<th>Zinsanteil</th>
<th>Tilgungsanteil</th>
<th>Annuität</th>
<th>Restschuld</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>€ 2.121,44</td>
<td>€ 7.878,56</td>
<td>€ 10.000,00</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>€ 2.513,44</td>
<td>€ 7.486,56</td>
<td>€ 10.000,00</td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>€ 527,12</td>
<td>€ 9.472,88</td>
<td>€ 10.000,00</td>
<td>€ 8.705,01</td>
</tr>
<tr>
<td>13</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

– Beschreiben Sie, wie man aus dem Tilgungsplan ablesen kann, dass der Zinssatz \(i' \) größer als \(i \) ist.
– Berechnen Sie die Zeile für das Jahr 13 des Tilgungsplans, wenn man davon ausgeht, dass die Schuld am Ende dieses Jahres vollständig getilgt wird.
Obsthaendler * (B.489)

a) Die Renovierung soll durch einen Kredit in Höhe von € 60.000 finanziert werden.

Das Angebot einer Bank sieht folgende Rückzahlungen vor:
- eine Einmalzahlung in Höhe von € 15.000 am Ende des 1. Jahres
- eine weitere Einmalzahlung in Höhe von € 20.000 am Ende des 3. Jahres
- 6 Halbjahresraten in Höhe von jeweils R, die erste Rate ist am Ende des 4. Jahres fällig

1) Veranschaulichen Sie diese Rückzahlungen auf der nachstehenden Zeitachse.

2) Berechnen Sie die Ratenhöhe R bei einem Semesterzinssatz von 3 % p. a.

b) Der Obsthändler überlegt, die Renovierung erst in 2 Jahren durchzuführen, um bis dahin Geld anzusparen. Er geht davon aus, dass er monatlich nachschüssig € 2.400 auf ein Konto einzahlen könnte. Dadurch möchte er innerhalb von 2 Jahren € 60.000 ansparen.

1) Berechnen Sie denjenigen effektiven Jahreszinssatz i, bei dem der Obsthändler sein Sparziel genau erreichen würde.

2) Begründen Sie ohne Berechnung, warum der zugehörige effektive Jahreszinssatz niedriger ist, wenn die monatlichen Einzahlungen vorschüssig erfolgen.

Wohnanlage * (B.502)

a) Die Kosten für die Sanierung in Höhe von € 52.647,60 werden proportional zur Wohnungsgröße aufgeteilt. Die jeweiligen Größen der 4 Wohnungen sind: 52 m², 60 m², 78 m² und 102 m².

1) Berechnen Sie den Kostenaufwand für die Sanierung der größten Wohnung in Euro.

b) Zur Finanzierung der Sanierung nehmen die Wohnungseigentümer einen Kredit in Höhe von € 20.000 auf. Sie vereinbaren mit der Bank, den Kredit durch 6 vorschüssige Jahresraten R zu tilgen. Die erste Jahresrate ist nach 3 Jahren fällig. Für die Rückzahlung wird der Jahreszinssatz i vereinbart.

1) Veranschaulichen Sie diesen Zahlungsstrom (Kreditbetrag und Jahresraten) auf einer Zeitachse.

2) Erstellen Sie eine Gleichung zur Berechnung von R. Verwenden Sie dabei den Jahreszinssatz i.

Unmittelbar vor dem Bezahlen der 1. Jahresrate entscheiden sich die Wohnungseigentümer dafür, bei ansonsten gleichbleibenden Bedingungen den Kredit mit nur 3 Jahrenraten zu tilgen.

3) Argumentieren Sie, dass diese neuen Jahrenraten weniger als doppelt so hoch wie die zuvor vereinbarten Jahresraten sind.
c) Eine andere Bank unterbreitet den Wohnungseigentümern zur Rückzahlung eines Kredits ein Angebot, bei dem der Kredit bei einem fixen Jahreszinssatz in 5 Jahren vollständig gezahlt werden wird.

Im Folgenden ist ein Teil des Tilgungsplans dargestellt.

<table>
<thead>
<tr>
<th>Jahr</th>
<th>Zinsanteil</th>
<th>Tilgungsanteil</th>
<th>Annuität</th>
<th>Restschuld</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>€ 20.000,00</td>
</tr>
<tr>
<td>1</td>
<td>€ 600,00</td>
<td>-</td>
<td>€ 600,00</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>€ 600,00</td>
<td></td>
<td>€ 5.500,00</td>
<td>€ 15.100,00</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>€ 5.500,00</td>
<td>€ 10.053,00</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>€ 5.500,00</td>
<td>€ 4.854,59</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td>€ 0,00</td>
<td></td>
</tr>
</tbody>
</table>

1) Berechnen Sie den Jahreszinssatz des Kredits.

2) Tragen Sie im obigen Tilgungsplan die fehlenden Beträge in die grau markierten Zellen ein.

Anschaffungen (B.134)

a) Für einen Kredit in Höhe von € 50.000 bietet eine Bank bei einer Laufzeit von 10 Jahren und Rückzahlung durch nachschüssige Monatsraten einen effektiven Jahreszinssatz von 4,5 %.

- Berechnen Sie die Höhe der Monatsraten.

b) Das Angebot einer anderen Bank für die Rückzahlung eines Kredits in Höhe von € 50.000 ist ausschnittweise im folgenden Tilgungsplan dargestellt:

<table>
<thead>
<tr>
<th>Semester</th>
<th>Zinsanteil</th>
<th>Tilgungsanteil</th>
<th>Annuität</th>
<th>Restschuld</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>€ 50.000</td>
</tr>
<tr>
<td>1</td>
<td>€ 1.112,62</td>
<td>€ 11.387,38</td>
<td>€ 12.500</td>
<td>€ 38.612,62</td>
</tr>
<tr>
<td>2</td>
<td>€ 859,22</td>
<td>€ 11.640,78</td>
<td>€ 12.500</td>
<td>€ 26.971,84</td>
</tr>
<tr>
<td>3</td>
<td>€ 600,19</td>
<td>€ 11.899,81</td>
<td>€ 12.500</td>
<td>€ 15.072,03</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td>€ 12.500</td>
<td></td>
</tr>
</tbody>
</table>

- Zeigen Sie, dass diesem Tilgungsplan ein effektiver Jahreszinssatz von rund 4,5 % zu- grunde liegt.

- Vervollständigen Sie im obigen Tilgungsplan die Zelle für das 4. Semester.

Die Rückzahlung des Kredits soll am Ende des 5. Semesters durch eine Restzahlung abgeschlossen werden.

- Berechnen Sie die Höhe dieser Restzahlung.

c) Der Unternehmer nimmt einen weiteren Kredit in Höhe von € 10.000 auf, den er innerhalb eines Jahres zurückzahlen möchte.

Er kann zwischen 2 Rückzahlungsvarianten bei gleichem Jahreszinssatz wählen:

- 1. Variante: 2 nachschüssige Semesterraten in Höhe von € 5.000 und 1 Restzahlung
- 2. Variante: 4 nachschüssige Quartalsraten in Höhe von € 2.500 und 1 Restzahlung

- Erklären Sie, warum 2 nachschüssige Quartalsraten von € 2.500 nicht genau einer nachschüssigen Semesterrate von € 5.000 entsprechen.

- Erklären Sie, bei welcher Variante der Unternehmer eine höhere Restzahlung zu tätigen hat.
Reisebus *(B_516)*

b) Für den Ankauf des Reisebusses hat das Reiseunternehmen in den letzten 8 Jahren eine Rücklage in Höhe von € 60.000 gebildet.

Die Höhe der Rücklage ergibt sich aus einer Einmalzahlung in Höhe von € 20.000 und regelmäßigen Zahlungen R:

\[
20000 \cdot 1,021^8 + R \cdot \frac{1,021^8 - 1}{1,021 - 1} = 60000
\]

1) Tragen Sie alle Zahlungen R auf der nachstehenden Zeitachse ein.

\[
\text{€ 20.000}
\]

\[
\text{€ 60.000}
\]

\[
\text{Zeit in Jahren}
\]

2) Berechnen Sie die Höhe von R.

Einige Werte des Tilgungsplans sind in der nachstehenden Tabelle angegeben.

<table>
<thead>
<tr>
<th>Jahr</th>
<th>Zinsanteil</th>
<th>Tilgungsanteil</th>
<th>Annuität</th>
<th>Restschuld</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>€ 35.331,00</td>
</tr>
<tr>
<td>3</td>
<td>€ 1.059,93</td>
<td>€ 2.440,07</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1) Tragen Sie in der obigen Tabelle die Höhe der Annuität in die grau markierte Zelle ein.

Bei der weiteren Tilgung des Kredits verbleibt ein Restbetrag, der ein Jahr nach der letzten Vollrate bezahlt wird.

2) Ermitteln Sie die Höhe dieses Restbetrags.
Zinsentwicklung *(B 528)*

b) Bei Abschluss eines Kreditvertrags kann festgelegt werden, ob der Zinssatz während der gesamten Laufzeit konstant bleibt oder ob sich der Zinssatz entsprechend der aktuellen Marktlage immer wieder verändert.

In der nachstehenden Tabelle ist ein Ausschnitt aus einem Tilgungsplan dargestellt.

<table>
<thead>
<tr>
<th>Jahr</th>
<th>Zinsspan</th>
<th>Tilgungsanteil</th>
<th>Annuität</th>
<th>Restschuld</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td>€50.000,00</td>
</tr>
<tr>
<td>1</td>
<td>€2.100,00</td>
<td>€4.900,00</td>
<td>€7.000,00</td>
<td>€45.100,00</td>
</tr>
<tr>
<td>2</td>
<td>€1.894,20</td>
<td>€5.105,80</td>
<td>€7.000,00</td>
<td>€39.994,20</td>
</tr>
<tr>
<td>3</td>
<td>€1.399,80</td>
<td></td>
<td>€7.000,00</td>
<td></td>
</tr>
</tbody>
</table>

1) Überprüfen Sie nachweislich, ob sich der Zinssatz innerhalb der dargestellten 3 Jahre verändert hat.

2) Tragen Sie in der obigen Tabelle die beiden fehlenden Beträge im Jahr 3 ein.

c) Ein Geldbetrag \(B \) wird 2 Jahre lang mit dem Jahreszinszussat \(i_0 \) verzinst, danach weitere 3 Jahre mit einem geänderten Jahreszinssatz \(i_1 \).

1) Stellen Sie eine Formel für den Endwert \(E \) am Ende dieser 5 Jahre auf. Verwenden Sie dabei \(B \), \(i_0 \) und \(i_1 \).

\[E = \]

2) Berechnen Sie für \(i_0 = 3 \% \) und \(i_1 = 1 \% \) denjenigen gleichbleibenden Jahreszinszussat \(i \), bei dem der Betrag \(B \) innerhalb von 5 Jahren auf den gleichen Endwert \(E \) anwächst.
All Star Level

Autokauf (2) (B_197)
Ein neues Auto kostet € 66.700.

– Überprüfen Sie, ob Herr Maler unter diesen Bedingungen das Auto innerhalb der ersten 14 Tage nach Kauf bezahlen soll.

b) Frau Specht möchte dasselbe Auto kaufen. Allerdings kann sie nicht den vollen Kaufpreis von € 66.700 zahlen. Sie überlegt daher, das Auto zu leasen. Das Autohaus bietet ihr folgende Konditionen:

Anzahlung: € 13.340
Laufzeit: 36 Monate
monatlich nachschüssige Raten: € 922
Restwert: € 26.000

– Berechnen Sie den effektiven Jahreszinssatz für dieses Leasinggeschäft.

c) Eine Alternative zu einer Leasingfinanzierung ist die Finanzierung mittels eines Kredits. Für das zum Verkauf stehende Auto (Kaufpreis: € 66.700) wird folgender Kredit angeboten:

Anzahlung: € 13.360
Zinssatz: 5,06 % p.a.
Laufzeit: 60 Monate

– Berechnen Sie, wie hoch bei diesem Angebot die zu leistenden nachschüssigen Monatsraten sind.

Gerätekau (B_211)

b) Die Geräte können durch einen Bankkredit finanziert werden. Familie Kurz erhält folgendes Angebot:

Kreditbetrag: € 10.000
Bearbeitungsgebühr: 2 % des Kreditbetrags (bei Kreditausschuss fällig)
60 nachschüssige Monatsraten zu je € 185

– Berechnen Sie den zugrunde liegenden jährlichen Effektivzinssatz dieses Angebots.

– Stellen Sie den Verlauf der Kreditrückzahlung auf einer Zeitsach dar.
– Berechnen Sie die Höhe der vereinbarten Raten.
– Berechnen Sie, wie hoch die Sonderzahlung sein muss, um die versäumten Zahlungen nachzuholen.
Kreditkonditionen (B.122)

a) Ihre Hausbank bietet Ihnen einen Kredit in Höhe von € 100.000 zu folgenden Konditionen an:
Rückzahlung durch vorschüssige Monatsraten bei einem Zinssatz von 4,2 % p.a. und einer Laufzeit von 10 Jahren.

- Ermitteln Sie die Höhe der Monatsraten.

- Berechnen Sie, wie viele Jahre und Monate nach Kreditaufnahme die Schuldbeglichen ist, wenn die Restzahlung 1 Monat nach der letzten Vollrate fällig ist.
- Stellen Sie diese Situation mit den entsprechenden Rückzahlungsbeträgen grafisch in einer Zeitlinie dar.

c) Die folgenden Grafiken zeigen in Zeitlinien 2 weitere Rückzahlungsvarianten eines Kredits mit jährlichen Raten \(R \) bzw. \(Z \) mit dem Jahreszinssatz \(i \).

1. Variante:

\[\begin{array}{cccccccccccc}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
\hline
R & R & R & R & R & R & R & R & R & R & R & R & R
\end{array} \]

Zeit in Jahren

2. Variante:

\[\begin{array}{cccccccccccc}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
\hline
\end{array} \]

Zeit in Jahren

- Beschreiben Sie die beiden Zahlungsweisen in Worten.
- Argumentieren Sie, dass die angegebene Gleichung den Wert von \(Z \) richtig beschreibt.

\[Z = R \cdot (1 + q)^{o}, \quad \text{wobei} \quad q = 1 + i \quad \text{bedeutet} \]

Photovoltaik (1) (B.201)

- Ermitteln Sie den effektiven Jahreszinssatz dieses Angebots in Prozent.

Rücklage (B.125)

Die Eltern von Martin legen für ihn 5 Jahre vor Abschluss der höheren Schule für sein spätestes Studium € 22.500 als Rücklage auf ein Sparkonto.
Lisa erhält von ihrer Eltern ab demselben Zeitpunkt 5 Jahre lang € 375 monatlich vorschüssig auf ein Sparkonto, das mit dem gleichen Jahreszinssatz wie bei Martin verzinst wird.
Der Zinssatz bleibt während dieser 5 Jahre konstant, es finden keine weiteren Transaktionen auf den beiden Konten von Martin und Lisa statt. Es gibt keine Kontoeröffnungsgebühr.

a) - Erklären Sie, mit welchem Rechenansatz man aus dem Jahreszinssatz den äquivalenten Monatszinssatz \(i^{o} \) anhand der Zinszinsformel herleiten kann.
(Data Kapitalertragsteuer ist bei dieser Berechnung nicht zu berücksichtigen.)
b) Lisa meint, dass zwar 60-mal € 375 wie bei Martin ebenfalls € 22.500 ergeben, aber die vorschüssige monatliche Ratezahlung bei Verzinsung mit 0,2 % p. m. einem geringeren Barwert entspricht.

- Argumentieren Sie, weshalb Lisas Aussage stimmt.
- Berechnen Sie die Differenz zwischen dem Barwert der Ratezahlung bei Lisa und dem Geldbetrag, den Martin von seinen Eltern erhält.
- Runden Sie das Ergebnis auf Euro.
(Die Kapitalertragsteuer ist im gegebenen Zinssatz bereits berücksichtigt.)

- Berechnen Sie, wie hoch der Jahreszinssatz für Lisa unter dieser Voraussetzung sein müsste. Berücksichtigen Sie die Kapitalertragsteuer von 25 %.

Wohnungsrenovierung (B_139)
Im Zuge einer Wohnungsrenovierung benötigt Thomas einen Kredit in Höhe von € 30.000.

a) Seine Bank bietet ihm einen Kredit mit einer Laufzeit von 10 Jahren, der bei einem Zinssatz von nominell 4 % p. a. und quartalsmäßiger Verzinsung durch nachschüssige Monatsraten getilgt werden soll.

- Ermitteln Sie den äquivalenten Monatszinssatz.
- Erstellen Sie eine Gleichung, mit der die Ratenhöhe berechnet werden kann.
- Berechnen Sie die Ratenhöhe.

b) Thomas hört sich für diesen Kredit ein weiteres Angebot von einer anderen Bank.
Diese verlangt eine Bearbeitungsgebühr von 2 % vom Kreditbeträgen, die bei der Auszahlung einbehalten wird.
Die Rückzahlung des Kredits erfolgt in 12 Jahren durch nachschüssige Quartalsraten in Höhe von je € 800.

- Veranschaulichen Sie den Zahlungstrom auf einer Zeitachse.
- Berechnen Sie den effektiven Jahreszinssatz.

c) Das Angebot einer dritten Bank ist in folgendem Tilgungsplan dargestellt:

<table>
<thead>
<tr>
<th>Jahr</th>
<th>Zinsanteil</th>
<th>Tilgungsanteil</th>
<th>Amortität</th>
<th>Restschuld</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>€ 30.000,00</td>
</tr>
<tr>
<td>1</td>
<td>€ 1.950,00</td>
<td>€ 491,75</td>
<td>€ 1.841,75</td>
<td>€ 29.508,25</td>
</tr>
<tr>
<td>2</td>
<td>€ 1.827,88</td>
<td>€ 513,87</td>
<td>€ 1.841,75</td>
<td>€ 28.994,38</td>
</tr>
</tbody>
</table>

- Erklären Sie die Begriffe und den Zusammenhang von Zinsanteil und Tilgungsanteil.
- Berechnen Sie den Jahreszinssatz, der dem Tilgungsplan zugrunde liegt.

Sparkonto (B_120)
a) Karin zahlt 18 Jahre lang auf ein Sparkonto jährlich nachschüssig einen Betrag in Höhe von € 500 ein.

Der angepaaerte Betrag kann bei einem Jahreszinssatz von 1,5 % und mit Berücksichtigung der KESI mithilfe der folgenden Funktion beschrieben werden:

\[
K = 500 \cdot \frac{1.01125^t - 1}{0.01125}
\]

K ... Kapital in Euro (€)

t ... Zeit in Jahren

- Erklären Sie, um welche finanzmathematische Formel es sich handelt.
- Erklären Sie, wie der Zinssatz von 1,5 % in diese Formel eingeht.
b) Karin hat einen Betrag in Höhe von € 10,000 angespart. Er wird mit einem Zinssatz von 1,2 % p. a. weiter verzinst (Nebengebühren und Steuern sind im angegebenen Zinssatz berücksichtigt). Karin möchte davon monatlich nachschüssig je € 200 abheben.

- Berechnen Sie, wie oft Karin genau diesen Betrag abheben kann.
- Ermitteln Sie, welcher Restbetrag unmittelbar nach der letzten Abhebung auf dem Konto verbleibt.

c) Karin tätigt die in der nachstehenden Zeitlinie dargestellten Abhebungen.

\[R_1, R_2, R_3, R_4, R_5, R_6, R_7, R_8, R_9, R_{10} \]

- Beschreiben Sie den dargestellten Sachverhalt in Worten.
- Erstellen Sie eine Formel, mit der der Wert \(B \) aller Abhebungen zum Zeitpunkt der 1. vorgenommenen Abhebung berechnet werden kann. Gehen Sie dabei von einem Jahreszinssatz \(i \) aus.

\[B = \]

Stallbaufinanzierung (B_170)

Ein Landwirt möchte einen größeren Stall bauen. Der Kostenvoranschlag beläuft sich auf € 375,000.

In den angegebenen Zinssätzen sind die Kapitalertragsteuer, die anfallenden Gebühren berücksichtigt.

\[a) \text{ Er spart seit 14 Jahren jährlich vorschüssig € 2,800, die zu 2,3 \% p. a. verzinst werden. Zusätzlich hat er vor 22 Jahren € 65,000 auf ein Sparbuch gelegt, das mit 1,8 \% p. a. verzinst wird.} \]

- Berechnen Sie, wie viel Geld er für den Stallbau zusätzlich zu seinem vorhandenen Kapital aufbringen muss.

\[b) \text{ Der Landwirt nimmt einen Kredit zur Begleichung der Gesamtkosten von € 375,000 auf. Zur Rückzahlung werden nachschüssige Jahresraten der Höhe } R \text{ bei konstanter Zinssatz über einen Zeitraum von 30 Jahren vereinbart. Er kann die 6., die 7. und die 8. Rate nicht bezahlen. Der Zinsatz beträgt 4,8 \% p. a.} \]

- Erstellen Sie eine Zeitlinie zur Beschreibung des Zahlungsverlaufs.
- Die Höhe der ursprünglichen Rate beträgt gerundet \(R = € 23,841 \). Der Zinssatz beträgt 4,8 \% p. a.
- Berechnen Sie die neue Ratenhöhe \(R_{neu} \).

\[c) \text{ Die Bank bietet zur Rückzahlung des Kredits von € 375,000 folgende Möglichkeit an: 5 Jahre nach Auszahlung des Kreditbetrags wird einmalig eine Zahlung der Höhe } x \text{ entrichtet. Der Rest wird durch eine 10 Jahre nach Auszahlung des Kreditbetrags beginnende Rente mit vorschüssigen Jahresraten der Höhe } R \text{ über 20 Jahre abgedeckt. Es ist bei allen Zahlungen von einem Jahreszinssatz } i \text{ auszugehen.} \]

- Modellieren Sie eine Formel zur Berechnung des Einmalbetrags } x \text{.} \]
Lösungen

Rookie Level

Ansparpläne * (B_382) Lösung

a) \(E = B \cdot (1 + i)^n \)
\[i = \sqrt[3]{\frac{E}{B} - 1} \]

b) \[\begin{align*}
0 & : 1.000 \\
1 & : \downarrow \\
2 & : 1.500 \\
3 & : \downarrow \\
4 & : R \\
5 & : \downarrow \\
\end{align*} \]

\[\text{Zeit in Jahren} \]

\[\downarrow 4.000 \]

Der Punkt ist auch zu vergeben, wenn der angesparter Betrag (€ 4.000) auf der Zeitachse nicht angegeben ist.

Der Restbetrag muss kleiner als € 1.500 sein, da die Einzahlungen verzinst werden.

Eine Begründung nur durch die nachstehende Rechnung ist nicht ausreichend.

\[
1.000 \cdot 1,03^4 + 1.500 \cdot 1,03^3 + R \cdot 1,03 = 4000
\]

\[
R = \frac{4000 - 1.000 \cdot 1,03^4 - 1.500 \cdot 1,03^3}{1,03} = 1199,418...
\]

Als Restbetrag müssen € 1.199,42 eingezahlt werden.

c) € 5.000 werden 5 Perioden lang mit einem Zinssatz von 3,5 % pro Periode anlagt.

Nach 3 Perioden kommen noch € 1.000 dazu. Nach 5 Perioden beträgt der angesparte Geldbetrag € 7.009,66.

Wurden konkrete Perioden (z. B. Jahre) bei der Beschränkung verwendet, ist der Punkt zu vergeben.

d) ohne Verzinsung:

\[\frac{6.000}{24} = 250 \]

Ohne Verzinsung beträgt die Ratenhöhe € 250.

mit Verzinsung:

\[4000 \cdot 1,0025^{24} + R \cdot \frac{1,0025^{24} - 1}{0,0025} = 10000 \]
\[R = \frac{(10000 - 4000 \cdot 1,0025^{24}) \cdot 0,0025}{1,0025^{24} - 1} = 232,887... \]

Mit Verzinsung beträgt die Ratenhöhe € 232,89.
Hotelrenovierung (1) (B_210) Lösung

b) \(80000 = 17900 \cdot \left(\frac{1 + \text{i}_{e}}{\text{i}_{e}} \right)^{-1} \cdot \frac{1}{(1 + \text{i}_{e})^{2}} \)

mittels Technologieeinsatz:
\(\text{i}_{e} = 0.03860 \ldots \)

Der effektive Jahreszinssatz ist rund 3,86 %.

Bei der halbjährlichen Zahlungsart ergibt sich durch die früher fälligen Zahlungen ein höherer effektiver Jahreszinssatz.

Sonnensegel (B_091) Lösung

b) monatlicher Zinszinsfaktor \(q_{m} = \sqrt[12]{1.024} = 1.00197 \ldots \)
\(12500 = 360 \cdot \frac{q_{m}^{n} - 1}{q_{m} - 1} \cdot q_{m}^{n} \)

Lösung mittels Technologieeinsatz:
\(n = 36,00 \ldots \)

Die Firma muss 36 Monatsraten zahlen.

Maschinerring (B_182) Lösung

a) \(R \ldots \) Höhe einer Jahresrate in €

\[\begin{array}{cccccccccc}
\text{R} & & & & & & & & & \text{Zahl in Jahren} \\
\hline
1 & & & & & & & 2 & & \text{R} \\
3 & & & & & & & & & \text{R} \\
5 & & & & & & & & & \text{R} \\
7 & & & & & & & & & \text{R} \\
9 & & & & & & & & & \text{R} \\
\hline
\end{array} \]

\(q = 1.015 \)
\(30000 \cdot q^{10} + R \cdot \frac{q^{10} - 1}{q - 1} \cdot q = 150000 \Rightarrow R = \text{€ 10.603,06} \)

Die Höhe der Jahresraten beträgt € 10.603,06.

Wenn die Raten genau doppelt so hoch wären, wäre die Summe der bezahlten Raten zwar gleich hoch, der Endwert der 5-jährigen Rente aber niedriger, weil die Verzinsungen der ersten 5 Raten fehlten. Um den gleichen Wert zu erhalten, müssen die Raten daher mehr als doppelt so hoch sein.

Baugrundstücke* (B_090) Lösung

a) \(228000 \cdot (1 + \text{i})^{4} = 753000 \)
\(\text{i} = \sqrt[4]{753000} \cdot \frac{1}{228000} - 1 = 0,3480 \ldots \)

Der mittlere jährliche Zinssatz beträgt rund 34,8 %.

b) Barwertgleich:
Angabe 1: \(150000 + \frac{50000}{1,03^{5}} = 197129,795 \ldots \)
Angabe 2: \(222000 \cdot \frac{1}{1,03} = 196116,504 \ldots \)
\(197129,795 \ldots - 196116,504 \ldots = 1013,290 \ldots \)

Die beiden Angebote unterscheiden sich zum Zeitpunkt des Vertragsabschlusses also um rund € 1.013.

Bei einem Zinssatz von 1,98 % p. a. sind die beiden Angebote äquivalent.
Verzinsung * (A_256) Lösung

a) \(K_n = 3.000 \cdot 1,05^5 \cdot 1,01^5 = 3.542.679 \ldots \)
Der Kontostand nach 5 Jahren beträgt € 3.542.68.

\[1 + i = \sqrt[10]{1,05^5 \cdot 1,01^5} = 1,0338 \ldots \approx 1,034 \quad \text{oder} \quad \frac{3.542.679}{3.000} \cdot (1 + i)^5 \]
\[i = \frac{3.542.679}{3.000} - 1 = 0,0338 \ldots \]

Der Jahreszinssatz beträgt rund 3,4%.

Anschaffungen (B_134) Lösung

a) monatlicher Aufzinsungsfaktor: \(q_{12} = \sqrt[12]{1,04} \)

\[50.000 = R \cdot \frac{q^{240} - 1}{q_{12} - 1} \cdot \frac{1}{12} = R = 516.020 \ldots \]
Die Höhe der Monatsraten beträgt € 516,02.

b) Semesterzinssatz \(i_s = \frac{1.112.62}{50.000} = 0,02225 \ldots \)
effektiver Jahreszinssatz \(i = (1 + i_s)^5 - 1 = 0,04499 \ldots \approx 4,50 \% \)

<table>
<thead>
<tr>
<th>Semester</th>
<th>Zinsanteil</th>
<th>Tilgungsanteil</th>
<th>Annuität</th>
<th>Restschuld</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>€ 50.000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>€ 1.112.62</td>
<td>€ 11.387.38</td>
<td>€ 12.500</td>
<td>€ 38.612.62</td>
</tr>
<tr>
<td>2</td>
<td>€ 859.22</td>
<td>€ 11.640.78</td>
<td>€ 12.500</td>
<td>€ 28.971.84</td>
</tr>
<tr>
<td>3</td>
<td>€ 600.19</td>
<td>€ 11.899.81</td>
<td>€ 12.500</td>
<td>€ 15.072.03</td>
</tr>
<tr>
<td>4</td>
<td>€ 335.30</td>
<td>€ 12.164.61</td>
<td>€ 12.500</td>
<td>€ 2.907.42</td>
</tr>
</tbody>
</table>

Erbschaft * (B_264) Lösung

a1) Zinssatz: 3 % p. a.

a2)

\[\begin{array}{c|c|c|c|c|c}
0 & 1 & 2 & 3 & 4 & 5 \\
\hline
\€ 50,000 & \hline
\€ 20,000 & Z & Z & \hline
\end{array} \]

\[\text{Berechnung mittels Technologieeinsatz:} \]
\[Z = 17,202,934... \]
Die Höhe der Auszahlungen \(Z \) beträgt \(\€ 17,202,93 \).

b1) Da das Erbe angelegt und verzinst wird, kann Jutta einen höheren Betrag als monatlich \(\€ 500 \) abheben.

b2) \(i = \sqrt[12]{1,03} - 1 = 0,002486... \)
Der Monatszinssatz beträgt rund 0,247 %.

b3) \(a_{12} - 1 + i_{12} \)
\[50,000 \cdot 1,03^{12} = R \cdot \frac{q_{12}^{12} - 1}{q_{12} - 1} + 20,000 \]
\[\text{Berechnung mittels Technologieeinsatz:} \]
\[R = 587,845... \]
Die Höhe der Monatsraten beträgt \(\€ 587,85 \).

Oeffentlicher Verkehr in Wien * (B_515) Lösung

a1) \(q_{12} \) ... monatlicher Aufzinsungsfaktor
\[365 = 33 \cdot \frac{q_{12}^{12} - 1}{q_{12} - 1} \cdot \frac{1}{q_{12}^{12}} \]
\[\text{Berechnung mittels Technologieeinsatz:} \]
\[q_{12} = 1,0151... \]
\[i = q_{12}^{12} - 1 = 0,19818... \]
Der effektive Jahreszinssatz beträgt rund 19,82 %.
Ansparplan * (B_185) Lösung

a1) Die Anleihe wird die ersten 6 Jahre zu 1 % p. a., dann 2 Jahre zu 2 % p. a., 2 Jahre zu 3 % p. a. und schließlich 2 Jahre zu 3,5 % p. a. verzinst.

\[(1 + i)^6 = 1,01^6 \cdot 1,02^2 \cdot 1,03^2 \cdot 1,035^2 = i = 0,0191...\]

Der mittlere jährliche Zinssatz beträgt rund 1,9 %.
(Eine Berechnung des mittleren jährlichen Zinssatzes als gewichtetes arithmetisches Mittel ist als falsch zu werten.)

a2) \[\frac{20000}{1,01^6 \cdot 1,02^2 \cdot 1,03^2 \cdot 1,035^2} = 15934,796...\]

Monika muss € 15.934,79 anlegen, damit sie in 12 Jahren € 20.000 angespart hat.

b1)

€ 20.000

\[\begin{array}{c|c|c|c|c|c|c|c|c|c|c|c|c}
\hline
& 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 \\
\hline
\text{€ 8.000} & & & & & & & & & & & & & \text{Z} & \text{Z} \\
\text{€ 12.000} & & & & & & & & & & & & & \text{Z} & \text{Z} \\
\hline
\end{array}\]

\[8000 \cdot 1,02^2 + Z \cdot 1,02^2 + Z \cdot 1,02^4 = 20000 \implies Z = 4326,655...\]

Die Höhe einer Einzahlung Z beträgt € 4.326,66.

c1) \[20000 = R \cdot \frac{1 - 1,02^{12}}{0,02} \implies R = 1461,952...\]

Der jährliche Ansparbeitrag beträgt € 1.461,95.

c2) Sie wird damit ihr Sparziel nicht erreichen, da die Zahlungen großteils später erfolgen und sie somit weniger Zinsen erhält.
Pro Level

Liftgesellschaft (1) * (B_434) Lösung

a) \(1400000 = 900000 \cdot \frac{1.04^8 - 1}{0.04} \cdot \frac{1}{1.04^8} \)

Lösung der Gleichung mittels Technologieeinsatz:
\(n = 24,81 \ldots \)
Die Liftgesellschaft muss 24 volle Jahresraten bezahlen.
\[\left(1400000 \cdot 1.04^8 - 900000 \cdot \frac{1.04^8 - 1}{0.04} \right) \cdot 1.04 = 1264478,83 \ldots \]

b) Der Betrag in Höhe von € 50.000 wird 2 Jahre zu 3 % p.a., dann 4 Jahre zu 3,5 % p.a. verzinst.

\[\epsilon 178.096,05 \]

Pensionsvorsorge * (B_420) Lösung

a) \(400 \cdot 1.0027^{10} \cdot \frac{1.0027^{100} - 1}{0.0027} = 92803,312 \ldots \)
\(92803,312 \ldots \cdot 1.0027^{100} = 208385,72 \ldots \)
Sein privater Pensionsbetrag beträgt nach 40 Jahren rund € 208.385,72.

b) \[€ 20.000 \]
\[€ 30.000 \]
\[€ 40.000 \]
\[€ 200.000 \]
\(200000 = 20000 \cdot (1 + i)^{10} + 30000 \cdot (1 + i)^{20} + 40000 \cdot (1 + i)^{30} \)
Lösung mittels Technologieeinsatz:
\(i = 0,02514 \ldots \)
Der zugehörige Jahreszinsatz beträgt rund 2,51 % p.a.

c) \(200000 = 12000 \cdot \frac{1.02^2 - 1}{0.02} \cdot \frac{1}{1.02^2} \)
Lösung mittels Technologieeinsatz:
\(n = 20,4 \ldots \)
Er könnte 20-mal den vollen Betrag in Höhe von € 12.000 abheben.

Bei Variante 2 bleibt das angesparte Kapital erhalten, weil der Betrag, den er am Ende jedes Jahres abhebt, genau den anfallenden Zinsen entspricht.
Seegrundstück *(B_415) Lösung

a) \[865\,000 = 100\,000 \cdot \frac{1 - 1.0675^{-11}}{0.0675} \]
Lösung der Gleichung mittels Technologieeinsatz:
\[n = 13,42... \]
Der Kreditnehmer muss 13 volle Raten bezahlen.
\[\left(865\,000 - 100\,000 \cdot \frac{1 - 1.0675^{-11}}{0.0675} \right) \cdot 1.0675^{11} = 43\,077,467... \]
Die Höhe des Restbetrags beträgt € 43.077,46.

b) Annuität im Jahr 1: 51\,467,50 + 53\,532,50 = 105\,000
Restschuld im Jahr 1: 865\,000 - 53\,532,50 = 811\,467,50
Im Jahr 1 beträgt die Annuität € 105.000 und die Restschuld € 811.467,50.

Die Restschuld erhöht sich um die anfallenden Zinsen.

c) Jeweils am Ende des ersten, des dritten und des vierten Jahres erfolgt eine Einmalzahlung in Höhe von € 100.000, € 80.000 bzw. € 110.000.
Ab dem fünften Jahr wird eine 6-mal zahlbare nachschüssige Jahresrate in Höhe von \(R \) vereinbart.

Restschuld zum Zeitpunkt \(t = 4 \) Jahre:
\[865\,000 \cdot 1.06^4 - 100\,000 \cdot 1.06^4 - 80\,000 \cdot 1.06 - 110\,000 = 778\,140,970... \]
\[778\,140,970... = R \cdot \frac{1 - 1.06^4}{0.06} \cdot \frac{1}{1.06^4} \]
Berechnung mittels Technologieeinsatz: \(R = 158\,244,793... \)
Die Ratenhöhe beträgt € 158.244,79.

Startkapital *(B_146) Lösung

a)

<table>
<thead>
<tr>
<th>Zeit in Jahren</th>
<th>€ 20,000</th>
<th>€ 75.000</th>
<th>€ 450</th>
<th>€ 450</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[a_n = \sqrt[3]{1.021} \]
\[K_n = 20\,000 \cdot 1.021^n + 75\,000 \cdot 1.021^n + 450 \cdot \frac{q_{10}^{20} - 1}{q_{10} - 1} \cdot a_n = 128\,094,522... \]
Simon kann nach 10 Jahren € 128.094,52 beheben.
\[R \cdot \frac{q_{10}^{10} - 1}{q_{10} - 1} = 128\,094,52 \Rightarrow R = 961,203... \]
Die Ratenhöhe beträgt € 961,20.

b) fehlende Zahl:
1. Zeile Annuität: € 10.332 (aus \(Z + T = 1332 + 9000 \))
\[45\,000 = R \cdot \frac{1 - 1.04^{-10}}{0.04} - 1 \cdot 1.04 \]
\[R = 10\,106,220... \]
Die Ratenhöhe beträgt € 10.108,22.
Kredit für einen Wohnungskauf *(B_223) Lösung

a) \(i_z = \sqrt[12]{1.03} - 1 = 0.002468... \approx 0.247 \% \)
Der Monatszinssatz beträgt rund 0.247 %.

monatlicher Aufzinsungsfaktor: \(q_z = i_z + 1 \)

Barwertformel für nachschüssige Monatsrente:

\[120000 = R \cdot \frac{q_z^{120} - 1}{q_z - 1} \cdot \frac{1}{q_z^{52}} \rightarrow R = 663,088... \]

Die Höhe der Monatsraten beträgt € 663,09.

b) Auszahlungsbetrag: 120000 · 0.98 = 117600

Äquivalenzgleichung: 117600 = 2650 · \(\frac{q^{10} - 1}{q - 1} \cdot \frac{1}{q^{50}} \)

Lösung mittels Technologieeingabe: \(q = 1,010475... \)
\(q = q^* = 1,042586... \)

Die effektive Jahreszinssatz beträgt rund 4.257 %.

c) Den Quartalszinsatz erhält man, indem man den Zinsteil im Quartal 1 durch die Kreditsumme dividiert, d. h.:

\[i_q = \frac{12000}{120000} = 0.01 \approx 1 \% \]

Die Kreditsumme ist der Barwert einer nachschüssigen Rente, die Annuität deren Rate.

Äquivalenzgleichung: 120000 = 2186,26 · \(\frac{1,01^{40} - 1}{0,01} \cdot \frac{1}{1,01^{52}} \)

Lösung mittels Technologieeingabe: \(n = 80,00... \)

Die Laufzeit des Kredits beträgt 80 Quartale.

Die Annuität ist die Summe von Zinsteil und Tilgungsanteil.

Hotelerweiterung *(B_106) Lösung

d) 800000 = 58100 · \(\frac{q^{50} - 1}{q - 1} \cdot \frac{1}{q^{20}} \)

Berechnung mittels Technologieeingabe: \(q = 1,02476... \)
\(f = q^* = 1,05013... \)

Für dieses Finanzierungsmodell beträgt der zugrunde liegende effektive Jahreszinssatz rund 5.01 %.

Renovierungskredit *(B_349) Lösung

a) \[30000,00 \]

\[\begin{array}{c|c|c|c|c}
0 & 1 & 2 & 3 & 4 \\
\hline
€ 30,000 & \downarrow & \uparrow & \uparrow & \uparrow \\
€ 8,000 & \rightarrow & \rightarrow & \rightarrow & \rightarrow \\
\end{array} \]

\[30000 = 8000 \cdot 1,02^{-1} + R \cdot 1,02^{-2} + R \cdot 1,02^{-4} \]
\[R = 11672,921... \]

Die Ratenhöhe beträgt € 11,672,92.

Wenn die Raten früher bezahlt werden, wird die ausstehende Kreditsumme über eine kürzere Zeitspanne verzinst. Daher sind die Raten niedriger.
b) \[i_{12} = \sqrt{1 + 0,0458} - 1 = 0,0037388... \]
Der Monatszinssatz beträgt rund 0,3739 %.
\[\check{q}_{12} = 1 + i_{12} \]
\[B_{\text{nom}} = 550,11 \cdot \frac{q_{12}^{12} - 1}{q_{12} - 1} \cdot \frac{1}{q_{12}^{12}} = 30000,132... \]
\[B_{\text{eff}} = B_{\text{nom}} \cdot q_{12} = 30112,297... \]
Es handelt sich um eine nachschüssige Ratenzahlung, da der Barwert der Raten in diesem Fall der Kreditsumme entspricht.

c) 3480 \cdot 0,9 = 3132
Unter Berücksichtigung des Annuitieszuschusses muss Frau Eberhardt Halbjahresraten in Höhe von € 3.132 bezahlen.

\[30000 = 3132 \cdot \frac{q_{2}^{2} - 1}{q_{2} - 1} \cdot \frac{1}{q_{2}^{2}} \]

Lösung mittels Technologieinsatz: \(q_{2} = 1,007906... \)
\[i = (q_{2}^{2} - 1) = 0,01587... = 1,59 \% \]
Der effektive Jahresarzinsatz beträgt rund 1,59 %.

Die Verzinsung beträgt 0 %, wenn die Halbjahresraten \(\frac{30000}{10} = € 3.000 \) betragen. Dafür muss zur vereinbarten Halbjahresrate von € 3.480 ein Zuschuss in Höhe von € 480 gewährt werden.

d) Im Semester 1 erfolgt keine Rückzahlung. Im Semester 2 werden nur die anfallenden Zinsen zurückbezahlt.

Segelboot (B_117) Lösung

a) Zeitlinie:

```
€ 6.000  € 1.200  € 1.200  € 1.200  € 1.200  € 1.200  € 1.200
0  1  2  3  4  5  Zeit in Jahren
```

\[B = 6000 + 1200 \cdot \frac{(1 + i)^{n} - 1}{i} \cdot \frac{1}{(1 + i)^{n}} \]

b) Ansatz mit Berechnung des Endwerts nach 7 Jahren:

\[6000 \cdot 1,08^7 + 1200 \cdot 1,08^7 + R \cdot 1,08^7 - 1 \]

\[0,08 \]

Die Ratenhöhe beträgt € 649,41.

c) € 5.000 ist der Barwert der nachschüssigen Quartalsrate.

\[q_{4} = \sqrt[4]{1,08} \]

\[5000 = 300 \cdot \frac{q_{4}^{4} - 1}{q_{4} - 1} \cdot \frac{1}{q_{4}^{4}} \]

Lösung der Gleichung mittels Technologieinsatz: \(n = 19,2... \)
Es sind 19 volle Quartalsraten zu bezahlen.

Restzahlung am Ende des 20. Quartals:

\[\text{Rest} = 5000 \cdot q_{4}^{20} - 300 \cdot \frac{q_{4}^{20} - 1}{q_{4} - 1} \cdot q_{4} = 78,282... \]

Ein Quartal nach der letzten Einzahlung ist noch ein Restbetrag in Höhe von € 76,26 zu bezahlen.
Sparbuch * (B_222) Lösung

a) \(q_{12} = \sqrt[12]{1,015} - 1,00124 \ldots \)

Barwert der Ratenzahlung: \(200 \cdot \frac{q_{12}^{20} - 1}{q_{12} - 1} \cdot \frac{1}{1,015^{12}} = 22284,999 \ldots \)

Barwert des Restbetrags: \(1292,500 \ldots \)

\(22284,999 \ldots + 1292,500 \ldots = 23577,500 \ldots \)

Es müssen zu Beginn € 23577,50 auf das Sparbuch einbezahlt werden.

b)

\[
\begin{array}{c|c|c|c|c|c|c|c|c|c}
\text{Zeit in Jahren} & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
\hline
€ 10.000 & & & & & & & & & & \text{€ 20.000} \\
\end{array}
\]

\[10.000 \cdot 1,015^x + x \cdot 1,015^x = 20000 \]

\[x = 8353,499 \ldots \]

Es muss ein Betrag in Höhe von € 8353,50 nach 5 Jahren einbezahlt werden.

Wird der Betrag x schon nach 2 Jahren einbezahlt, so können dafür zusätzlich 3 Jahre lang Zinsen lukriert werden. Um diesen Betrag sinkt die Höhe von x bei früherer Einzahlung.

c) \[25000 = 2300 \cdot \frac{q^{12} - 1}{q - 1} \cdot \frac{1}{1,01565} \]

\[q = 1,01555 \ldots \]

Der jährliche Zinssatz beträgt rund 1.56 %.

Interneteinkäufe (B_216) Lösung

\[q_{12} \ldots \text{monatlicher Aufzinsungsfaktor} \]

\[q_{12} = 13 \cdot \frac{q_{12}^{22} - 1}{q_{12} - 1} \cdot \frac{1}{1,0165^2} + 17,22 \]

Lösung mittels Technologieeinsatz:

\[q_{12} = 1,0165 \ldots \]

\[L_0 = q_{12}^{22} - 1 = 0,21716 \ldots \]

Der effektive Jahreszinssatz beträgt rund 21.72 % p. a.

Kuechenkauf * (B_453) Lösung

a1) \[3000 \cdot (1 + i)^1 + 3000 \cdot (1 + i)^2 + 3000 \cdot (1 + i)^3 = 10000 \]

\[i = 0,02617 \ldots \]

Der zugrunde liegende Jahreszinssatz beträgt rund 2,62 %.

a2) \[\frac{0,02617 \ldots}{0,75} = 0,0349 \ldots \]

Der Jahreszinssatz vor Abzug der KEst beträgt rund 3,5 %.
Erweiterung der Produktpalette (B_142) Lösung

Kaffeeautomat * (B_285) Lösung

Autokauf (1) * (B_459) Lösung

b1) \[\sqrt{1,04} - 1 = 0,01980... \]

Der äquivalente Semesterzinsansatz beträgt rund 1,98 %.

b2)

<table>
<thead>
<tr>
<th>Semester</th>
<th>Zinsanteil</th>
<th>Tilgungsanteil</th>
<th>Semesterrate</th>
<th>Restschuld</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>€ 20,000</td>
</tr>
<tr>
<td>1</td>
<td>€ 396,08</td>
<td>€ 0</td>
<td>€ 396,08</td>
<td>€ 20,000</td>
</tr>
<tr>
<td>2</td>
<td>€ 396,08</td>
<td>€ 1,603,92</td>
<td>€ 2,000</td>
<td>€ 18,396,08</td>
</tr>
</tbody>
</table>

b3) Der Tilgungsanteil berechnet sich aus der Differenz von Semesterrate und Zinsanteil. Wenn die Semesterrate verdoppelt wird, bleibt der Zinsanteil trotzdem gleich hoch. Somit ist der neue Tilgungsanteil mehr als doppelt so hoch wie der alte Tilgungsanteil.

c1) \[S = 20000 \cdot (1 + i) - 3000 \cdot \frac{(1 + i)^{120} - 1}{i} \]

oder:

\[S = 20000 \cdot q^{120} - 3000 \cdot \frac{q^{120} - 1}{q - 1} \]

mit \(q = 1 + i \)

Die Höhe der Monatsraten beträgt € 3,981,48.

Kaffeeautomat * (B_285) Lösung

a1) \[\frac{5500 \cdot 1000}{100} \cdot \frac{q^{100} - 1}{q - 1} \cdot \frac{1}{q^{100}} + \frac{900}{q^{100}} \]

Berechnung mittlerer Technologieeinsatz: \(q_{12} = 1,0087... \)

\[i - q_{12}^{12} - 1 = 0,1099... \sim 11,0 \% \]

Autokauf (1) * (B_459) Lösung

a1) \[\frac{17100}{360} \]

\[\frac{3420 + 36 \cdot 380}{380} = 17100 \]

Die Summe aller Zahlungen ergibt den Listensatz. Daher ist die Behauptung des Händlers richtig.

b1) \[17100 = R + \frac{R}{1,02^2} + \frac{R}{1,02^3} \]

b2) Berechnung mittleren Technologieeinsatz:

\[R = 5869,461... \]
c1)

<table>
<thead>
<tr>
<th>Jahr</th>
<th>Zinsanteil</th>
<th>Tilgungsanteil</th>
<th>Annuität</th>
<th>Restschuld</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>€ 17.100</td>
</tr>
<tr>
<td>1</td>
<td>€ 256,50</td>
<td>€ 5.743,50</td>
<td>€ 6.000,00</td>
<td>€ 11.356,50</td>
</tr>
<tr>
<td>2</td>
<td>€ 170,35</td>
<td>€ 5.829,65</td>
<td>€ 6.000,00</td>
<td>€ 5.526,85</td>
</tr>
</tbody>
</table>

c2) \[5526,65 \cdot 1,015 = 5609,75 \]

d1) \[17100 \cdot 0,92 = 15732 \]

Bei Barzahlung beträgt der Preis des Autos € 15.732.

d2) \[15732 = 3420 + 380 \cdot \frac{q_{12}^{36} - 1}{q_{12} - 1} \cdot \frac{1}{q_{12}^{10}} \]

Berechnung mittels Technologieneinsatz:

\[q_{12} = 1,0058... \]

\[l = q_{12} - 1 = 0,0719... \]

Der Jahreszinssatz ist rund 7,2 %.

Lagerhalle * (B_484) Lösung

a1) \[X = 180000 - 50000 \cdot (1 + l)^4 - 70000 \cdot (1 + l)^3 \]

a2) \[X = 180000 - 50000 \cdot 1,025^4 - 70000 \cdot 1,025^3 = 49.427,011... \]

Es fehlt ein Betrag in Höhe von € 49.427,01.

b1) \[R = \frac{1.01^{1/4} - 1 - \frac{1}{1.01^{1/4}}}{0.01} \Rightarrow R = 5.482,007... \]

Die Höhe einer Quartalsrate beträgt € 5.482,01.

c1) \[l = \frac{5400}{180000} = 0,03 \]

Der Jahreszinssatz beträgt 3 %.

c2) Das Unternehmen bezahlt im Jahr 1 nichts, die Annuität ist gleich null.

Da die Summe aus Zinsanteil und Tilgungsanteil gleich null ist, muss der Tilgungsanteil negativ sein.

c3)

<table>
<thead>
<tr>
<th>Jahr</th>
<th>Zinsanteil</th>
<th>Tilgungsanteil</th>
<th>Annuität</th>
<th>Restschuld</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>€ 5.562</td>
<td>€ 5.400</td>
<td>€ 10.962</td>
<td>€ 180.000</td>
</tr>
</tbody>
</table>

Produktionserweiterung (2) * (B_337) Lösung

Restschuld im Jahr 11: \[3705,01 + 9472,88 = 13.177,89 \]

Zinsanteil \(l' = \frac{527,12}{13.177,89} \Rightarrow l' = 0,0400... \approx 4,0 % \)

<table>
<thead>
<tr>
<th>Jahr</th>
<th>Zinsanteil</th>
<th>Tilgungsanteil</th>
<th>Annuität</th>
<th>Restschuld</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>€ 3705,01</td>
<td>€ 3.705,01</td>
<td>€ 148,20</td>
<td>€ 3.853,21</td>
</tr>
</tbody>
</table>
Obsthaendler * (B_489) Lösung

a1) Auszahlung: € 60,000

Rückzahlungen:
€ 15,000
€ 20,000

Zeit in Jahren
0 1 2 3 4 5 6 7 8 9

a2) \[60,000 = \frac{15,000}{1,03^2} + \frac{20,000}{1,03^5} + R \cdot \frac{1 - 1,03^{-1}}{0,03} \Rightarrow R = 6,609,203 \ldots \]

Die Ratenhöhe beträgt € 6,609,20.

b1) \(q_{12} \) monatlicher Aufzinsungsfaktor

\[60,000 = 2,400 \cdot \frac{q_{12}^{12} - 1}{q_{12} - 1} \]

Berechnung mittels Technologieneinsatz: \(q_{12} = 1,00353 \ldots \)

\(i = q_{12}^{12} - 1 = 0,04319 \ldots \)

Der effektive Jahreszinssatz beträgt rund 4,32 %.

b2) Im Falle vorschüssiger Einzahlungen wird jede Einzahlung 1 Monat länger verzinst. Da der Endwert gleich hoch ist, muss im Vergleich zu nachschüssigen Einzahlungen der zugehörige effektive Jahreszinssatz niedriger sein.

Wohnanlage * (B_502) Lösung

a1) \[52,647,60 \cdot \frac{102}{52 + 60 + 78 + 102} = 18,390,60 \]

Der Kostenanteil für die Sanierung der größten Wohnung beträgt € 18,390,60.

b1) € 20,000

Zeit in Jahren
0 1 2 3 4 5 6 7 8 9 10

b2) \[20,000 \cdot (1 + i)^6 = R \cdot \frac{(1 + i)^6 - 1}{i} \cdot \frac{1}{(1 + i)^6} \]

Auch eine Verwandlung des Aufzinsungsfaktors \(q = 1 + i \) ist als richtig zu werten.

b3) Da das Geld früher zurückgezahlt wird, fallen weniger Zinsen an, und damit sind die Raten weniger als doppelt so hoch.

c1) \(i = \frac{600}{20,000} = 0,03 = 3 \% \)

c2)

<table>
<thead>
<tr>
<th>Jahr</th>
<th>Zinsanteil</th>
<th>Tilgungsanteil</th>
<th>Annuität</th>
<th>Restschuld</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>€ 20,000,00</td>
</tr>
<tr>
<td>1</td>
<td>€ 600,00</td>
<td>€ 0,00</td>
<td>€ 600,00</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>€ 600,00</td>
<td>€ 5,500,00</td>
<td>€ 15,100,00</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>€ 5,500,00</td>
<td>€ 10,053,00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>€ 5,500,00</td>
<td>€ 4,854,59</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>€ 145,64</td>
<td>€ 4,854,59</td>
<td>€ 5,000,23</td>
<td>€ 0,00</td>
</tr>
</tbody>
</table>

Finanzmathematik Stand: 06.11.2021
Anschaffungen (B_134) Lösung

a) monatlicher Anzinsungsfaktor: \(q_{10}^{12} = \sqrt[12]{1.045} \)

\[
50,000 = R \cdot \frac{q_{10}^{12} - 1}{q_{10}^{12} - 1 - q_{12}^{10}} \Rightarrow R = 516,020\ldots
\]

Die Höhe der Monatsraten beträgt € 516,02.

b) Semesterzinssatz \(i = \frac{1112.62}{50000} = 0.02225\ldots \)

effektiver Jahreszinssatz \(i = (1 + i)^\frac{1}{2} - 1 = 0.04499\ldots = 4.50\% \)

<table>
<thead>
<tr>
<th>Semester</th>
<th>Zinsanteil</th>
<th>Tilgungsanteil</th>
<th>Annuität</th>
<th>Restschuld</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td>€ 50,000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>€ 1,112,62</td>
<td>€ 11,387,38</td>
<td>€ 12,500</td>
<td>€ 36,612,62</td>
</tr>
<tr>
<td>2</td>
<td>€ 859,22</td>
<td>€ 11,640,78</td>
<td>€ 12,500</td>
<td>€ 26,971,84</td>
</tr>
<tr>
<td>3</td>
<td>€ 600,19</td>
<td>€ 11,999,81</td>
<td>€ 12,500</td>
<td>€ 15,072,03</td>
</tr>
<tr>
<td>4</td>
<td>€ 335,39</td>
<td>€ 12,164,61</td>
<td>€ 12,500</td>
<td>€ 2,907,42</td>
</tr>
</tbody>
</table>

c) Zu dem Zeitpunkt, zu dem die Semesterrate gezahlt wird (also am Ende des Semesters), wurde die 1. bezahlte Quartalsrate bereits 1 Semester lang verzinst. Der Endwert der beiden Quartalsraten ist daher etwas höher als die Semesterrate.

Der Endwert der Quartalsraten ist etwas höher als der Endwert der Semesterraten. Daher ist die Restzahlung bei der 1. Variante höher.

Reisebus * (B_516) Lösung

b1) € 60,000

\[
\begin{array}{ccccccccc}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline
R & R & R & R & R & R & R & R & R \\
\end{array}
\]

\[
€ 20,000 = R
\]

\[
b2) \quad R = (60,000 - 20,000 \cdot 1,021^5) \cdot \frac{1,021^5 - 1}{(1,021^5 - 1) \cdot 1,021^2} = 8,455,200\ldots
\]

Die Höhe von \(R \) beträgt € 8,455,20.

c1) \[
\begin{array}{cccccc}
\text{Jahr} & \text{Zinsanteil} & \text{Tilgungsanteil} & \text{Annuität} & \text{Restschuld} \\
\hline
1 & € 1,059,93 & € 2,440,07 & € 3,500,00 & \\
\end{array}
\]

c2) \(1,03^{12} = 1,03^{10} \cdot 1,03^{2} = 35,31 = 35,00 \cdot \frac{1,03^{12} - 1}{1.03^{12} - 1 - 1,03^{10}} \cdot 1.03^{10} \)

Berechnung mittels Technologieeinsatz:

\[
n = 12,204...
\]

\[
35,31 \cdot 35,00 \cdot \frac{1,03^{12} - 1}{1.03^{12} - 1 - 1,03^{10}} \cdot 1.03^{10} = 722,498\ldots
\]

Die Höhe des Restbetrags beträgt € 722,50.
Zinsentwicklung *(B_528) Lösung

b1) Zinssatz im Jahr 1: \(\frac{2,100}{50,000} = 0,042 \)
Zinssatz im Jahr 2: \(\frac{1,894,2}{45,100} = 0,042 \)
Zinssatz im Jahr 3: \(\frac{1,399,8}{39,994,2} = 0,035\ldots \)
Der Zinssatz hat sich im Jahr 3 verändert.

\[
\begin{array}{|c|c|c|c|c|}
\hline
\text{Jahr} & \text{Zinsanteil} & \text{Tilgungsanteil} & \text{Annuität} & \text{Restschuld} \\
\hline
0 & & & & € 50,000,00 \\
1 & € 2,100,00 & € 4,900,00 & € 7,000,00 & € 45,100,00 \\
2 & € 1,894,20 & € 5,105,80 & € 7,000,00 & € 39,994,20 \\
3 & € 1,399,80 & € 5,600,20 & € 7,000,00 & € 34,394,00 \\
\hline
\end{array}
\]

c1) \(E = B \cdot \left(1 + \frac{i}{n}\right)^n \)

c2) \(B \cdot 1,03^3 = B \cdot (1 + \frac{i}{n})^n \)
\(i = 0,01795\ldots = 1,795\ldots \% \)

Eine Berechnung von i mit Hilfe eines arithmetischen Mittels ist als falsch zu werten.
All Star Level

Autokauf (2) (B_143) Lösung

a) Die Kontoüberziehung verursacht bei einem Jahreszinssatz von 12 % für 18 Tage Kosten in Höhe von \(\frac{12\%}{360} \cdot 0,12 = 0,0053 = 0,53 \% \) von € 85.690,50.
Diese sind viel geringer als der angebotene Skonto von 1,5 % der Kaufsumme.
Hier Maier sollte das Angebot des Verkäufers annehmen.

b) \(13340 + 922 \cdot \frac{q_{12}^{00} - 1}{q_{12}^{10} - 1} \cdot \frac{1}{q_{12}^{10}} + 26000 = 66700 \)
 Lösung mittels Technologieinsatz: \(q_{12} = 1,00401 \)
 \(q = (q_{12})^{12} = 1,0492 \)
 Der Zinssatz beträgt rund 4,9 % p. a.

c) \(q_{12} = \sqrt[12]{1,0506} = 1,00412 \)
 \(66700 - 13560 = R \cdot \frac{q_{12}^{00} - 1}{q_{12}^{10} - 1} \cdot \frac{1}{q_{12}^{10}} \)
 \(53140 = R \cdot 53,0598 \)
 \(R = 1001,51 \)
 Die monatlichen Raten betragen jeweils € 1001,51.

Geraetekauf (B_211) Lösung

b) \(10000 = 200 + 185 \cdot \frac{q_{12}^{00} - 1}{q_{12}^{10} - 1} \cdot \frac{1}{q_{12}^{10}} \)
 Lösung mittels Technologieinsatz:
 \(q_{12} = 1,00417 \)
 \(q = (q_{12})^{12} = 1,05130 \)
 effektiver Jahreszinssatz:
 \(i = 5,13 \% \)

c) \[
\begin{array}{cccc}
\text{12-mal} & & \text{Sonderzahlung} & \text{42-mal} \\
0 & R & R & R \\
12 & 18 & 36 & 60 \\
\end{array}
\]
 vereinbarte Ratenhöhe \(R \):
 \(10000 = R \cdot \frac{1,0025^{12} - 1}{0,0025} \cdot \frac{1}{1,0025^{10}} \Rightarrow R = € 179,69 \)
 Wert der 6 verspäteten Monatsraten zum Zeitpunkt 18: 179,69 \cdot 1,0025^{12} = 1084,90
 aufgezinst zum Zeitpunkt 36: 1084,90 \cdot 1,0025^{18} = 1134,77
 Die Sonderzahlung muss € 1134,77 betragen.

Kreditkonditionen (B_122) Lösung

a) \(q_{12} = \sqrt[12]{1,042} \)
 \(100000 = R \cdot \frac{q_{12}^{00} - 1}{q_{12}^{10} - 1} \cdot \frac{1}{q_{12}^{10}} \Rightarrow R = 1014,739 \)
 Die Höhe der Rate beträgt € 1014,74.
b) $80,000 \cdot 1,042^{21} - 550 \cdot \frac{q_{12}^{21} - 1}{q_{12} - 1} \cdot \frac{1}{q_{12}^{11} - 1}$

Lösung mittels Technologieeinsatz:
$n = 241,61$...

Frau Mitter muss 241 vorschüssige Monatsraten zahlen.
Die Restzahlung erfolgt daher 241 Monate (19 Jahre und 1 Monat) nach Beginn der Rückzahlung.
Das bedeutet, 23 Jahre und 1 Monat nach Kreditaufnahme ist die Schuld beglichen.

<table>
<thead>
<tr>
<th>Zeit in Jahren</th>
<th>€ 550</th>
<th>€ 550</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>€ 80,000</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

c) Das erste Angebot zeigt 12 jährliche vorschüssige Rückzahlungsraten R.

Das zweite Angebot zeigt die Rückzahlung mit 6 jährlichen vorschüssigen Raten R, der Endwert dieser 6 Raten wird 6 Jahre weiterverzinnt, 3 Jahre sind ohne Rückzahlung und anschließend folgen 3 jährliche vorschüssige Raten Z, die die Rückzahlung abschließen.

Es wird 3-mal Z statt 6-mal R eingezahlt. Jedes Z steht demnach für 2 Zahlungen von R mit jeweils 3 Jahren zwischen den Zahlungen. Wegen der jährlichen Verzinsung, die noch jeweils dazu kommt, muss für jedes einzelne Z gelten:

$Z = R + R \cdot q^{3} = \text{daher ist } Z = R \cdot (1 + q^{3})$

Photovoltaik (1) (B_201) Lösung

b) Gebühren: 3 % von € 12.560 = € 376,80
Auszahlungsbetrag: € 12.183,20
Äquivalenzgleichung: $12.183,20 = 98 \cdot \frac{q_{12}^{20} - 1}{q_{12} - 1} \cdot \frac{1}{q_{12}^{20}}$

Lösung mittels Technologieeinsatz:
$q_{12} = q_{12}^{20} - 1 = 0,05388...
\quad q_{12} = 1,00436...
Der effektive Jahreszinssatz ist rund 5,39 %.

Rücklage (B_125) Lösung

a) Der äquivalente Monatszinssatz führt bei monatlicher Verzinsung innerhalb eines Jahres zum gleichen Ergebnis wie eine einmalige jährliche Verzinsung.

Wenn man ein Kapital K_0 ein Jahr lang mit i verzinst, so ergibt dies einen Endwert von:
$E = K_0 \cdot (1 + i)$

Wenn man das gleiche Anfangskapital monatlich mit $i_{1/12}$ verzinst, lautet die Zinseszinsformel:
$E = K_0 \cdot (1 + i_{1/12})^{12}$

Da beide Endwerte gleich sein sollen, gilt:
$1 + i = (1 + i_{1/12})^{12}$

Aus diesem Ansatz lässt sich der äquivalente Monatszinssatz $i_{1/12}$ berechnen.
b) Martin bekommt bar € 22.500.
Lisa würde in Zukunft monatlich € 375 bekommen, 60 Monate lang.
Um den Barwert dieser Ratenzahlung zu erhalten, müssen alle einzelnen 60 Raten auf den Anfangszeitpunkt abgezinst werden. Man erhält eine Folge von Beträgen:
\[\{375 \times 0,9424; 374,25; 373,5; \ldots\}\]
Die Summe dieser Beträge ergibt den Barwert und ist kleiner als 375 mal 60.

\[
\text{Martin: } 22500 \\
\text{Lisa: } 375 \times \frac{1,002^{60} - 1}{0,002} \times \frac{1}{1,002^{60}} = 21224,8\ldots \approx 21225
\]
Die Differenz beträgt rund € 1.275.

c) Jahreszinssatz bei Martin nach Berücksichtigung der KEST:
\[
2,5\% \times 0,75 = 1,875\% \\
22500 \times 1,01875^9 = 4500, q^9 - 1 \\
\frac{q}{q - 1}
\]
Lösung mittels Technologieeinsatz: \(q = 1,046457\ldots\)

Bei einem Jahreszinssatz von rund 4,65%, in dem bereits die KEST berücksichtigt ist, würde Lisa nach 5 Jahren den gleichen Betrag wie Martin bekommen.

Wohnungserneuerung (B_139) Lösung

a) \(l_{at} = \sqrt[4]{1,01} \cdot 0,9999 \cdot 1 - \sqrt[4]{1,01} \cdot 1 - 0,00332\ldots\)
Der äquivalente Monatszinssatz beträgt rund 0,33 %.
\[
30000 = R \cdot q_{12}^{40} - 1 \cdot \frac{1}{q_{12}^{40}} \quad \text{mit} \quad q_{12} = \sqrt[12]{1,01}
\]
\[
R = 303,546\ldots
\]
Die Ratenhöhe beträgt € 303,55.

b) \[
\begin{array}{ccccccc}
\text{€ 800} & \text{€ 800} & \text{€ 800} & \text{€ 800} & \text{€ 800} \\
\hline
0 & 1 & 2 & 3 & 4 & 5 & \text{Zahlung} & 67 & 68 & 69 & 70 & 71 & 72 & 73 & 74 & 75 & 76 & 77 & 78 & 79 & 80 \\
\hline
\end{array}
\]
\[
30000 - 600 = 800 \cdot q_{12}^{40} - 1 \cdot \frac{1}{q_{12}^{40}} \\
q_{12} = 1,011147\ldots
\]
\[
l_{at} = 1,011147\ldots \cdot 1 - 0,04669\ldots
\]
Der effektive Jahreszinssatz des Angebots beträgt rund 4,67 % p.a.

c) Zusammenhang:

Der Tilgungsanteil ist derjenige Teil der Annuität, der zur Tilgung der Schuld beiträgt. (Zinsanteil und Tilgungsanteil ergeben in Summe die Annuität.)

Berechnung des Zinssatzes:
\[
i = \frac{1350}{30000} = 0,045 \approx 4,5 \%
\]
Sparkonto (B_120) Lösung

a) Der Endwert einer nachschüssigen Jahresrente wird mit Hilfe folgender Formel berechnet:
 \[E = R \cdot \frac{q^n - 1}{q - 1} \]

 \(R \) ... jährliche Rate
 \(i \) ... Jahreszinssatz
 \(q \) ... Aufzinsungsfaktor, \(q = 1 + i \)
 \(n \) ... Anzahl der Raten

 Im Falle der vorliegenden Formel gilt:
 \(E = K \),
 \(n = t \),
 \(R = \€ 500 \),
 \(q = 1 + i = 1,01125 \),
 wobei \(i = 1,125\% \) beträgt, das entspricht dem Jahreszinssatz von 1,5\%, von dem 25\% KESt abgezogen wurden.

b) Berechnung der Anzahl \(n \) der monatlichen nachschüssigen Auszahlungen:
 \[q_{12} = \sqrt[12]{1,012} \]
 \[200 \cdot \frac{q_{12}^n - 1}{q_{12} - 1} = 10000 \]
 Lösung mittels Technologieinsatz:
 \(n = 51,3... \)

 Karin kann genau 51-mal \€ 200 abheben.
 Restbetrag = \(10000 \cdot q_{12}^n - 200 \cdot \frac{q_{12}^n - 1}{q_{12} - 1} = 62,257... \)

 Der Restbetrag beträgt rund \€ 62,26.

c) Karin hebt zunächst jeweils zu Beginn des Jahres 3-mal die Rate \(R_1 \) ab. Im Jahr 4 und im Jahr 5 wird nichts abgehoben.
 Ab dem 6. Jahr hebt Karin 5-mal jeweils am Ende des Jahres die Rate \(R_2 \) ab.
 \[B = R_1 \cdot \frac{1 + \frac{i}{12}}{\frac{i}{12}} + R_2 \cdot \frac{1}{\frac{i}{12}} \]
 Auch andere Formelentwicklungen sind möglich!

Stallbaufinanzierung (B_170) Lösung

a) \(2800 \cdot 1,023 \cdot \frac{1,023^{14} - 1}{0,023} \approx 46684,89 \)
 \(65000 \cdot 1,018^{20} = 96241,96 \)
 \(375000 - 46684,89 - 96241,96 = 232073,15 \)

 Der Landwirt benötigt noch \€ 232,073,15.

b)

\[\begin{align*}
\text{Zeit in Jahren} & \quad R_{\text{neu}} & \ldots \\
\text{€ 375,000} & \quad 33,841 & 1,048^{14} - 1 & 0,048 + R_{\text{neu}} \cdot 1,048^{14} - 1 & 0,048 + R_{\text{neu}} \cdot 1,048^{14} - 1 & \ldots & R_{\text{neu}} & R_{\text{neu}} & R_{\text{neu}} & \ldots
\end{align*} \]

Die neuen Raten betragen auf ganze Euro gerundet \€ 29,436.
c) Ansatzformel:

\[
q = 1 + i \\
375000 = \frac{x}{q^n} + R \cdot q^{i3} - 1 \cdot \frac{1}{q^{i3}} \cdot \frac{1}{q^{19}}
\]

Andere richtige Formeln sind ebenfalls zu akzeptieren.

Die Berechnungsformel für \(x \) kann man unter Umständen auch direkt – ohne einen Ansatz – angeben. Ist die Formel korrekt, so gilt das auch als richtig angesetzt.